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ABSTRACT OF THE DISSERTATION

Nonlinear Damping Model

for Flexible Structures

by

Weijian Zhang

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 1990

Professor A. V. Balakrishnan, Chair

This dissertation is on the study of nonlinear damping problem of flexible struc-

tures. Both passive and active damping, both finite dimensional and infinite dimen-

sional models are studied.

In the first part of this dissertation, the spectral density and the correlation

function of the following single DOF nonlinear damping model is investigated

where -y> 0 isa small parameter. A formula for the spectral density isestablished

with O(V 2) accuracy based upon Fokker-Planck technique and perturbation. The

spectral density depends upon certain firstorder statisticswhich could be obtained
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if the stationary density is known. A method is proposed to find the approximate

stationary density explicitly.

In the second part of this dissertation, the spectral density of the following multi-

DOF nonlinear damping model is investigated

M_ + Do_ + 7DCz, _)+ Kz = _nCt)

where -_ > 0 is a small parameter.

In multi-DOF case, z and _ are generally not uncorrelated in stationary state,

even in linear case, which is one of the features of the multi-DOF model. A necessary

and sufficient condition for uncorrelatedness is given for the linear model.

In the third part of this dissertation, energy type nonliner damping model in an

infinite dimensional setting is studied. According to its geometry of the structures

considered, the nonlinear damping models are divided into two types. The existence

and uniqueness result of the nonlinear damping model is based on the work of A.

Lunardi.

Then a Krylov-Bogoliubov type approximation is established for the nonlinear

damping model in the case the linear damping part is neglected. In general, the

generalization of Krylov-Bogoliubov approximation method, which applies only to

single DOF model, to multi-DOF model has been a formidable task. The result

presented here is based upon the specific form of nonlinearity - energy type damping.

From its Krylov-Bogoliubov approximation, we can see that there is no exchange of

energy between modes, i.e., internal resonance does not exist.

The notions of C"haracter_tic equation and its Root locus are extended to actively

damped distributed parameter systems. The root locus provides as insight of the

nature of active damping. Sufficient conditions of strong stabilizability are provided,

which are the weakest sufficient conditions obtained so far.
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Chapter 1

Introduction

1.1 Background and Survey

A new generation of spacecrafts often contain very large flexible components such

as truss structures, solar panels, dish antennas, radar arrays, space telescopes and

space stations. In general, these structures are characterized by weak damping, and

interconnection of rigid and flexible parts. The tasks of controlling the rotation,

pointing with high accuracy in minimum time or with minimum energy consump-

tion, and at the same time stabilizing the vibrations, pose very difficult control

problems. This need is evident for various ongoing government programs such as

space shuttle and space station. In 1984, NASA Langley Research Center and Dr.

A. V. Balakrishnan initiated a design challenge for the SCOLE (Spacecraft Control

Laboratory Experiment) problem[4], the objective of which includes the task of di-

recting the line-of-sight of the shuttle/antenna configuration toward a fixed target,

under condition of noisy data, limited control authority and random disturbances

[4]-[13].



In most applications, damping is important to the structural dynamics, and in

many applications it is in fact critical. Two examples may suffice to illustrate the

point: for spinning (or partly spinning) spacecraft, the level of energy dissipation

in the structure determine whether an initial wobbling motion grows or decays

(dynamical stability); and an automatically controlled flexible spacecraft may act

either unmanageable or docile (control system stability) depending on the level of

damping in the higher order vibration modes.

In addition, the advance of modern material science and technology has provided

us with useful structural material which are generally light weight. Their applica-

tions in spacrcrafts, high-performance helicopters have sharply increased in the past

decade. However, such viscoelastic materials have highly nonlinear characteristics

that cause significant nonlinear response in the system. The questions of analysis,

design and control appear more difficult.

Literature Survey

The following literature survey is made along the lines of nonlinear damping

and linear damping. In the nonlinear damping case, literature is devided into two

groups: (1) Finite dimensional model; (2) Infinite dimensional model. While in the

linear damping case, literature on distributed parameter system is divided into three

groups: (1) Strictly proportional and asymptotic proportional damping operator;

(2)Boundary damping model; (3)Interior point damping model. In the end, the

work on finite dimensional linear damping modelling is briefly reported .

Nonlinear Damping Model

• Finite Dimensional Model

There has been large amount of literature on finite dimensional nonlinear

damping model, among the authors, T. K. Caughey [25]- [27], S. H. Crandall



[34]- [36], P -T. Spanos [64] [65], V. V. Bolotin [21], T. S. Atalik and S.

Utku [1], I. I. Orabi and G. Ahemadi [59]. Hysteretic type nonlinear damping

has been studied by Y. K. Wen [70] [71]. An excellent survey is given by S.

H. Crandall [33]. These works have primarily focused on the study of the

response of nonlinear damping model to random excitations. Generally, three

methods are used in the analysis of nonlinear damping systems under random

excitations:

1. The Fokker-Planck approach;

2. The perturbation approach;

3. The equivalent (stochastic) linearization approach.

The main advantage of Fokker-Planck method over all the others is that, the-

oretically, exact solutions may be obtained when the excitations are Gaussian

white noise. Unfortunately, its use is limited because of the severe restrictions

that must be placed on the form of nonlinearities and on the spectral density

matrix of the excitations. For a more detailed study, refer to [25].

If the dynamical system has weak nonlinearities, then the approximate random

response may be obtained using the classical perturbation theory. First devel-

oped by Crandall [34], the approach has been later generalized to multi-degree

of freedom systems by Tung [68].

Among the methods mentioned above, the equivalent linearization technique

has the widest range of applicability. Basically, the method is the statistical

extension of Krylov Bogoliubov approximation method [49]. Although the

equivalent linearization method is widely used, it is incapable of displaying

the nature of nonlinearity.

3



• Infinite Dimensional Model

To the best of my knowledge, research work on nonlinear damping in a dis-

tributed parameter system is very limited.

A. V. Balakrishnan [13], for the first time, established energy nonlinear damp-

ing model for distributed parameter systems. The damping consists of asymp-

totically proportional linear damping term and energy nonlinear damping

term.

A. Lunardi [55] considered the transverse deflection of an extensible beam

with hinged ends and the nonlinear damping term considered is nonlinear vis-

cous damping. By reformulating the nonlinear damping model as a semilinear

abstract parabolic initial value problem, the author studied the stability and

the instability of all the stationary solutions and of small periodic orbits near

stationary solutions for the various ranges of the associated parameter in the

model.

H. K Wang and G. Chen [69] considered a vibrating string with one end fixed

and the other end is installed on a nonlinear damping device whose velocity-

frictional force relationship as determined by material testing is given by

TOY__ t) rr0Y( °,=. Yf t)]

where f(x) is a a multivalued function. The authors used the method of

characteristics and nonlinear semigroup theory to study the effect of nonlinear

boundary damping and analyzed the asymptotic behavior of the solutions of

such systems. The w-limit set of the dynamical system and the asymptotic

rates of various solutions to the w-limit set are determined.

Linear Damping (Distributed Parameter Systems)

4



• Strictly proportional and asymptotic proportional damping

To formulate the internal passive damping, strictly proportional and asymp-

totic proportional damping operators have been reported in A. V. Balakr-

ishnan [10] [11], as well as in G. Chen and D. Russell [28], S. Chen and R.

Triggiani [32]. F. Huang [42] [43] studied the spectral property of the systems

in the form

+ B (t) + Az(t) = 0

where B is a closed linear operator related in various ways to A ° with 1/2 <

a < 1. The author obtained some fundamental results for the holomorphic

property and the exponential stability of the semigroups associated with these

systems.

Strictly proportional damping operator is essentially the square root of the

In this case, the eigenvalues have the proportionalitystiffness operator A.

property

The drawback of strictly proportional damping is that the damping opera-

tor contains nonlocal feature, which is unnatural if we consider that internal

passive damping is due to the structure material itself. However, if strict

proportionality is relaxed to asymptotic proportionality, i.e.

lim 3( A,_) - constant

then, the nonlocal feature can be avoided.

A. V. Balakrishnan, based upon his theory on the fractional power of closed

linear operators [14], explicitly calculated the strictly proportional and asymp-

totic proportional damping operators for the beam bending model [11], in

5
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which one end of the beam is clamped and the other end has an end-body

attached to it. In [10], the strictly proportional damping operator is given

explicitly for beam torsion model.

• Boundary Damping

There has been considerable amount of literature on the distributed parameter

systems with boundary damping (including boundary active control). G. Chen

[29] [30]. J. Lagnese [50] [51], and R. Triggiani [52] [67], to name a few, have

studied the energy decay of solutions of wave equation on bounded domain

with damping only on the boundary. In general, in this kind of study, the

concrete question to be answered is:

Under what conditions is it true that there is an ezponential decay rate for

E(t), i.e.

E(t) < t > 0

for some positive w? In the above, E(t) stands for the total energy of the

vibrating systems, which needs to be properly defined.

Interior Point Damping

G. Chen, M. Coleman and H. H. West [31] and K. Liu [54] studied the energy

decay rate of a coupled vibrating string with a point damper installed at the

coupling point. In these studies, it is assumed that a damper applies damping

at an interior point where two strings couple. Possible mechanical designs are

also proposed in [31].

As far as linear damping problem in finite dimensional space, certain work has

been done. Modern computer-based techniques (such as finite element method)



enable the structural engineers to make highly precise calculations of the mass and

stiffness matrices of elastic structures. These calculations, in turn, lead to quite

accurate estimates of natural frequencies and mode shapes, particularly for the lower

modes. Structural damping properties, on the other hand, tend to be much less

accurately calculated; indeed, one usually simply guesses at modal damping factors.

Limited work has been done in this area [2] [3] [40]. D. F. Golla and P. C. Hughes [40]

developed a method of constructing linear damping matrix for viscoelastic structures

in the framework of finite element method. They assume that certain material

constants are available (ultimately by measurements) for each constituent material

of the structure, just as known densities determine mass properties, and known

elastic constants, such as Young's modulus, determine stiffness properties. These

measured viscoelastic material constants permit a set of equations to be formulated

for the dissipative properties over all parts of the structure. The method merges

naturally with finite element method and is a natural extension of it.

1.2 Objectives and Contributions of the Disser-

tation

Experimental data has clearly indicated the nonlinear nature of the internal friction

damping of large flexible space structures. Then, what is the frequency response of

a nonlinearly damped structure? Until now , Monte Carlo simulation has been the

only method of computing the frequency response, due to the lack of the parallel

theory as in linear systems, in which the frequency response can simply be obtained

from transfer functions. This dissertation provides an analytical method of com-

puting the frequency response of single DOF oscillator with nonlinear damping. In



spite of its fundamental importance, the nature of internal damping has been little

known. In the modeling aspect, this dissertation proposes an energy type nonlinear

damping model and the corresponding stationary probability density with white

noise input can be obtained explicitly. Theorem 3 gives an interesting result, in

terms of Krylov-Bogoliubov approximation, concerning the modeling and identifi-

cation of nonlinear internal damping in flexible structures. This work also serves a

contribution to the random vibration theory by providing a method of computing

the first and the second order statistics (steady state probability density, correlation

function and spectral density) of nonlinearly damped oscillators with white noise

input.

A Krylov-Bogoliubov type approximation is established for systems having in-

finite number of DOF's and its error estimate is obtained. Comparisons axe made

between nonlinear damping (linear stiffness) models and nonlinear stiffness (linear

damping) models, and between nonlinear damping (linear stiffness) models and lin-

ear models.

A group of sufficient conditions for strong stabilizability is provided for general

distributed parameter oscillation system, taking the actuator saturation into con-

sideration. These are the weakest sufficient conditions obtained so far and it is

found that the nature of internal damping is not crucial in guaranteeing the strong

stabilizability.

By extending the notions of characteristic equation and its toot locus to our

distributed parameter oscillation system, we studied the nature of active damping.



1.3 Organizations of the Dissertation

This dissertation is organized in the order of dimensions of the model:

1. Chapters 2 and 3 are on the single degree of freedom nonlinear damping mod-

els;

2. Chapters 4 and 5 are on the multi- but finite- degree of freedom nonlinear

damping models;

3. Chapters 6 is on infinite dimensional energy type nonlinear passive damping

models;

4. Chapter 7 is on the active damping of a uniform Euler-Bernoulli beam with

one end clamped and the other end free, with a tip mass. The notions of

Characteristic equation and Root locus are extended to distributed parameter

systems.

5. Chapter 8 is a summary of conclusions and a list of some related open prob-

lems.





Chapter 2

The Spectral Density of

Nonlinear Damping Model:

Single DOF Case

2.1 Introduction

The problem of characterizing the damping mechanism in flexible structures has

received renewed attention in recent years in connection with the need to stablize

flexible flight structures such as antennas deployed in space. Experimental evidence

suggests the need for nonlinear damping model and the need to consider the effect

of random disturbances due to the uncertainties in system parameters and the en-

vironment. One of the most important subjects in nonlinear random vibration is

to obtain the second order statistics, i.e., correlation function and spectral density

of the stationary response, because they provide average amplitude and frequency

10



information about the sample histories.Unfortunately, up to now, the only practi-

cal method availableisMonte Carlo simulation and there isno analyticaltechnique

for the second order statisticsof nonlinear systems [33]. This paper presents an

analyticaltechnique for computing correlationfunction and spectral density of the

stationary response of nonlinear damping model subject to white noise excitation.

The basic nonlinear damping model we consider is

+ 2_,_o_+ _D(x,_)+ _o:X= _n(t) (i)

where _/> 0 is a small constant because the damping in flexiblespace structures, \

whatever itsnature, issmall.

The corresponding Fokker-Planck equation isgiven by

Op Op 0 _202p
0t - -Y_ + _y[(_0=x+ 2_oy + _D(_,y))p]+ -y oy----_

= Lop+'7_-_[D(z,y)p]

]_p(t,_,ylx0,y0)= 6(_- _o)_(y- _0) (2)

Notations

z(t) d--4fD(z(t),y(t));

p,(x,y): stationary density of (z(t),y(t)), i.e., the invariant measure;

rn,,j _t ff m2xivjp,(z,y)dzdv ' i,j = O, 1,2,...;

p(t, z, y[zo, Yo) : the fundamental solution of (2);

po(t, z, y[zo, yo) : the fundamental solution of (2) with _/= O;

T(t) _f ezp(Lot);

q(t,s,x, ylxo, Yo) _f _D(u, v)po(t - s,x, ylu , v)p(s, u, Vlxo, yo)dudv.

11



It is well-knownthat po(t, z, y[zo, yo) is a two-dimensional Gaussian density func-

tion. Its mean vector and covariance matrix can be found by straightforward calcu-

]ation, as

_"'; -:,.,0= sin _,.t wo cos(w.t + 8) Yo

(3)

E(t) def

2
Cry

1

__ 0"2

4_'o 0 o)1

(7 2

2r- _ C-2_wot

4 ,z;_ ( - _-_0[_ sin(2w,d - e) + 1]1 - cos 2w,#

where

w. = woy/'l-{ 2

0 = tan -1

Later on. we will need the notation

 2(10)E0 d_r lira E(t) -
t-oo 4_'o 0 1

and without ambiguity we will often denote E(t) by E.

Assumptions on D(a:, y)

(A1) D(x,y) is ditre,'entiable with respect to y;

1 - cos 2_,,t ) (4)
_[_ sin(2w.t + O) - 1]

(s)

12



(A2) 31( > 0, k > 0 such that ]D(x,y)l <_ K[1 + (x_ + y2) k] for (z,y) E _2;

(A3) ,n,j are finite fox" all nonnegative integers i,j.

Of course, to satisfy the energy nonincrease requirement, we also need

2_.'ov2+ D(x,y)v >_0 (x,v) _ 2n_

2.2 Results

2.2.1

Lenlnla 1

An equation of spectral density

Under assumption (A_) and (A3), it holds

lira q(t,s,a',y]xo, Yo)=O VO<s<t, (xo, Yo) EIR 2
l'2 + y 2 _,_x5

(6)

provided

x2+v:-o_limp(t,x,y]xo, Yo) = 0 Vt > O, (xo, Yo) e 1R2 (7)

Proof: First, by Schwarz inequality, we have

Iq(*,s,z, ylzo, yo)l <_ [[ ID( u, v ) lPo( t - *, z, y lu, v )p( s, u, vlzo, Yo)dudv
dd _2

[jj R_lD(u,v)12Po(t- s,_,vl_,v)p(,,_,vlxo, yo)d_d_]_/_<

x[jJ_2po(t - s,x, ylu, v)p(s, u, vlx0, vo)d_d_]_/_

Tho second sqare root term goes to 0 as x 2 + V 2 _ oo by the assumption (7).

Tlmrefore it is sutticient to show that tim first sqare root term is bounded for all

(8)

(-_'; y) C //_'-'.

In fact, we have

<

[D( u, v 12po(t - s, x, y lu, v )p( s, u, VlZo , yo )dudv

2=_/d_t_(t - s) _*lD(u'v)12p(s'u'vl_°'y°)dndv

13



In addition, by assuml)tions (A2) and (A3), we have

<
m

ff,_ ff _2 ID(x, v)lsV(t, x, VIx0,vo)V,(_o, uo)d_o@od_dv

//_ ID(x,Y)I=P,(x,y)dxdy

//z_ I(2[1 + (x 2 + y2)k]2p,(x,y)dzdy < oo

By Tol_lli's lemlna, we know that

ID(x,y)12p(t,x,ylxo, yo)p.(xo, vo) _ D(_ 2 @_2)

Then by Fubini's theorem, we know that

//nvJD(x,y)J2p(t,x,yl.,.)dxdyp,(.,.) E Lx(_ 2)

which implies tD(.,.)12p(l,.,-la, o, Vo) _ D(//_2). Therefore, by (8), the first sqare

root term is bounded for all (x, y) E fit 2. I:3

Theoreln 1 Under the assumptions (AI)-(A$), the following equations hold:

¢_.(_,) = (_'_ _ _.o_)_+ 4_,o_ _ + 2_[_ _ _o_1

4_.,o,no,2_2 ,_(_)
q'._v(") = (_,2 _ _._)2 +a¢2,,2.2_,_.o._ + 27w_[w2-wg + i2_woW

(9)

] (10)

WIt f_ I '(

and _. _ dcnolc ,'cal, imaginary parts.

Proof:(2) is equivalent to the following integral equation

p(_,z,ylzo, yo) = vo(t,_,yl_o, yo)

+7 fjT(t - s) O[D(z,y)p(s,z, yJZo, Yo)lds
OV

14



or more explicitly,

p(_,.,, ylxo, vo)= po(_,x,_lxo, yo)

(ii)

Performing integration by part in the second term and noticing the relation

Ol'°(t x, ylu, v ) - e-_'°°tsinw.t_x (t,x,y[u,v )
0 U _ " 02 n

e-_.wot

oy

we obtain tile following

./o' o,
( t - s, x, y lu, v )D( u, v )p(s, u, v IZo, yo)dudvds

o f[ _-_o, _-,)= ? -- sin_.,_(t- s)q(t,s,x, ylxo, Yo)ds

0 fu t e-_'_°lt-')+'_b-uu _ cos[w,,(t - s) + O]q(t,_,z, ylzo, yo)ds

Therefore, wc obtain the following integro-differential equation for p(t, z, y]zo, yo):

_,(_,_,vlxo, uo) = po(¢,_,vl_o, yo)

0 fot e -_°(t-s)+_ sinw,_(t- s)q(t,s,z, Ylzo, Yo)ds
_n

+_O-'yy0for e-_.'o('-.)_ cos[w,,(t - s)+O]q(t,s,z, ylxo, yo)ds(12)

Based upon (A2) a_,d hcncc Lemma 1, we find that the marginal transition

probability density p(*, a'la'o, Yo) satisfies the following equation, by integrating (12)

with respect to y over/R _,

p(t, xla'o, yo) 0 fot e-_'o"-.) sin w.(t - s)P°(t'zlz°'Y°) + "r-_z w.

× g_2po(t - s, xlu, v)D(u, v)p(s, u, vl_o, uo)a=aoa. (13)

15



After integration, the third te,'m vanishesby Lernma 1. And in (13), po(t, XlXo, yo)

is a one-dimensional Gaussian density with mean

e-_°*[a:oXoCOS(W.t O) + yosinw,,t]

and variance given 1)5"

1 __2 (_ sin(2wnt-0) + 1)]

Multiplying (13) by XoXps(x0, yo) and integrating with respect to (x, xo, y0) over

/_3. we obtain, for t > 0,

R..(t)

__ cos(..,,_t - O)

//av _'° /-L 2'P°(t'xlx°'y°)dzP_(x°'Y°)&°dY°

jo ///i/5--7 sin a.,.(t- s) po(t- s, xlu, v)dx
_'n _2 _2 oo

x D( u, v )p(s, _,, vlxo, yo)zops(xo, yo)dudvdzodyods

/ C-G_°tXo-- [_'oXocos(w,# - O) + Yosinw.t]p.(xo,yo)dxodyo
$22 _'n

t c-(_o(t-s)-7 sin a.',,(t - s)

¢-l_wot

jo t c -_°(t-s)__, sin,_.(t- _)n=(_)& (14)

Ill tlJc' above, we used the fact that

n,i,, =/f_2xoYoP,(Zo, yo)dxodyo = 0

which is generally true in nonlinear mechanics due to symmetry. If rn,,a # O, we can

get similar result with similar proof, and the only difference is an extra term with

rn,., as coefficient on the right of (9) and (10).

16



Since Rx_:(r) is even, hence

/_ /5¢" R_:_(r)e"°'dr = 2 Rxx(r)coswrdr
OG

(15)

And in general, we have the following relation

Jo _ /ot f ( t - s )g( s )ds cos wtdt

/2 /5 /5 /5= .f(t)cosa`,tdt g(t)coswtdt- f(t)sinwtdt g(t)sinwtdt (16)

if each of the integrals in (16) exists. Also, from the identity

fo _ _-{_0, sin w_tei_'tdt = 1
a.'--T- wg - w 2 - i2_wwo (17)

one can easily obtain two identities corresponding to the real and imaginary parts

of both sides.

Next, performing Fourier transform on both sides of (14) using (15), (16) and

(17), one obtains

(,,2_ ..,2o)f_ Rx..(t)coswtdt + 2_wowfg_ R,,.(t)sin,.,tdt
+2"7

(,o_ - ,4) _ + 4_,4,0_

4_.'8o,,,2,o _[(w 2 - wg - i2¢woW)q2..(w)]

= (a`,__a`,_)_+4_,4., _ +2_ (_2__o_)_+4_,_g., _

(.,_ -_.o_)_+ 4¢_a`,g_ - _o_ ]

For the second identity (10), one can similarly first show

C-_wot

m0.2lv/r-=___2 cos(,.,.t + O)

fo' e-e_,-.)cos[w.(t- s) + OlP_.(s)ds (18)

fl'om which (lO) follows. rn
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In linearcase,i.e.7 = 0 in (i),itiswell known that the spectra] densitiesof z

and _: have the following relation

The natural question to ask is whether we have similar relation for nonlinear damp-

ing model (1). The answer to this question is provided in the following

Corollary 1 Under the assumptions (A1)-(A3), it holds for (1)

w2C_(w) = ¢_(w) (19)

_2_ _o_+ i2,,_,0_,] = _[__ _oo_] (20)

_.'o2m_,o = too,2 (21)

Prod: (19) follows from

For (20), first one has

d

_ _ Ey(t)x(t + r)

d 2

- d,_E_(t - _)_(t)

_ d2 R_(r)
dr 2

Then integratioll l)y part gives

%:(_,) - iw dr

lfo -- : P_z(7")ei_rdr
_tO

1

- i %-.@) (22)
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in which wehave assumedthat

n=(o) = ft., _D(x,u)V.(_,u)d_du = 0

lim Rxz(r) = 0

Therefore, fi'om (22), we have

from which (10) becomes

%,,(-') 4e_°'"°.2_'= %'-(_ 1
= (_,2 __ao)= + 4_wgw2 + 27w2R[w= -wg + i2_woW J

4_-'omoaw 2 4_w_m_,o

= (_._- _.g)_+ 4¢_.o_,_ + _'_[¢=(_) - (_ - ,o_),+ 4_=,0_,=]

= _,2%.(_)- 4_0(_'o_m_,o- mo,=)_=
(w2_ wo_)2+ 4{:Wo2W2 (23)

Comparing (23) with (19), one can immediately obtains (21). D

2.2.2 The spectral density

In this subsection, we establish the perturbation formula of the spectral density of

(1) with O(_ _) accuracy. First, we need two lemmas.

Lenama 2 The following matrix relations hold

E(t) = Eo - ea'Eoe at'

E-I _ E-lea'(Eo 1 + eartE-leat)-lear'E -1 = Eo 1

(Eo 1 + eartE-aeat)-ae ar_ = P,oear'eo'Z

(24)

(25)

(26)

19



Proof: Define

_(t) dojEo - eA'Eoe:'

To show (24) is equivalent to showing E(t) = E(t).

In fact, since

(00)E(t) = fo eA(_-') 0 a 2
eAr(t-s)ds

we know that E(*) satisfies the following linear differential equation

. (00)_E(t) = AE(t) + E(t)A T + 0 a 2

And. based upon the simple fact

we also have

-AEo - EoA T = (oo)0 o.2

(27)

d

_E(l) = A(E(t) - Eo) + (E(t)- Eo)A T

(oo)= AE(t) + E(t)A T + (28)
0 a 2

Obviously. _(t) and E(t) have the same initial condition

E(0) = E(0) = 0

Thcrefore. thc uniqueness of the solutions of linear differential equations implies

:g(t) - _(_).

By the matrix inversion formula

(M] + M2M3:U.,) -_ = M7 _ - MT]312(M_ _ + -AhMf_M2)-_M4M7 _ (29)

20



wehave,noticing (24),

E-1 _ E-_ eA_(Eol + eArtE-l eAt)-l eaTtE -1

= (_ + eAt_3oeArt) -1

= Eo 1

For the proof of (26), we again use (29) and (24) to obtain

(_o 1 + eArt_-l eA_)-l eA_t

= leo - _oe_'(_ + e_'_oeA_')-'e_'_o]e_'

= EoeATt(I- EoleAtEoeATt )

= _oeAr'[I_ Eo_(_o- _)]

= EoeATtEolE

Lemma 3 For linear dampin9 model

+ 2_o_ + Jo x = on(t)

we have

where

E / )o,x t• • ( )

_bv = R2D(z,y) y _a2

Proof: Let us use the following notations:

X= Xo=
_/ V0

+ V2)]dzdv

[]

(30)

(31)
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By (25) and (26), wehave

(x - eA'Xo)rr,-1(x - eA'Xo)+ X[r_o'Xo

-- xT[_ -1 -- _-leAt(_ol + eATt_-leAt)-leATt_-I]x

+[-,¥0 -- ( eATtE-l eAt + _01)-leATtE-1X] T(eATtE-leAt -I- Eo 1)

X[XO- (eAT'z--leA' + _aO1)-leATt_'_--lX]

= XTEoIX

.3V.( XO __ ___Oe'ATt__jO ' X) T ( eAT't_'] -1 e A' + __sO 1 )( X 0 - _-'_0efl*T"_O l X)

Then

z(t) )
E D(z(t + r),y(t + r))

y(t)

ff_2ff_XoD(z, 1- y)2_ry_E(T)lexp[-1/2(X - eA_'Xo)T_-I(T)( x -- eArXo)]

I exp(_l/2XT_oiXo)dlZldlXol

x 2_ _o_

= ffRD(x,y ) 1 exp(_l/2XTBo,X)/J Xo

1_____ exp[-1/2(Xo - l_oear'l_o ' x)T(_o 1 + eaT__-lea_')

x 2_'_

x(Xo- EoeAT'_o'X)]dlXo]dlXl

1

= //R2D(x,Y)27r [_o[eXp(--1/2XTEo 'X)

Boea_'EolX
x dxdy

x/l_(,'lllr_o ' + eAr'r_-a(rle** I

1

= Coear'Coa//RXD(x,Yl2r]V_o_eXp(-1/2XTCo'X)dxdy
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 OeAT O(::)
In the above, we used the fact that

I:C(OIl:Co'+ eAr'r,-l(t)eAtl = 1

which could be easily verified by using (26). El

Theorem 2 Under assumptions (A1)-(A3}, the spectral density of (1) is given by

4(wam2,o

_xx(w) = (w 2 _ w_)2 + 4(2w_w 2

2_Wo¢_(w' - w_ + 4_2w_w 2) + Cv[(w 2 - W_o)2 - 4_2w_w 2]
+ 2-y +0(3 '2 ) (32)

Proof: If we write

(R(_l)(r) )+ ... (33)+

then (R(_°)(r), R_°)(r))is given by (30), i.e.,

/

e-e_t _ wocos(w.t - O)

w_ _ wo2 sin w,_t
--sin n''_o cos(writ + O) %

Through one-sided Fourier transform, we obtain

@_o)(w) = ¢t(iw- 2_Wo) + ¢,
w2 _ Wo2 + i2_ow (34)

which, together with (9), gives (32). O
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EXAMPLE 1: Consider the nonlinear damping model with

D(z,y) = z2'_[x['_y2"+lly[ _

where m, n are nonnegative integers and 0 < a, _ < 1.

Since D(x, y) is an even function of x, ¢_ = 0. And computation gives

2 l+a 1+8)
1 c a _+.+l+_r( m ---_-)r(n+l+

EXAMPLE 2: Consider the following saturation type active damping model,

÷ 2_Wo5: + 7tan -1 bJc + wgx = an(t) (35)

Similarly, we have ¢_ = O. And

CY f? . v_o , 2(_0 _,.= .o y tan-1 oy_ expt--_3-y )ay

ab .o 1 2_w0 2_dv
- J_oo1+ o

- 2_'_o _- ba

where the last equality is based upon the identity [40, p931]

¢(zy) = 1 - 2Xe-_V_r fo °°

e-t2y 2

dt z, y > 0 (36)
t 2 + x 2

in which

/:-vq

It is not surprising to see that the second order statistics depends upon the first

order statistics rni,j. Therefore it is important to compute those numbers mid, which

is our next topic.
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Chapter 3

On the Stationary Probability

Density: Single DOF Case

3.1 The Stationary Probability Density in a Par-

ticular Case

To determine rnLj , it is desirable to have p,(x, y) in explicit form. However, to obtain

p,(x, y) explicitly is itself a very difficult task which has attracted large amount of

literature. Many researchers have tried to clarify the largest class of nonlinear

damping models for which an explicit stationary density can be obtained. The most

recent and most inclusive account of this subject can be found in [22] and [23],

which include parametric excitation as well as external excitation cases. However,

the only useful result so far for the linear stiffness, nonlinear damping model with

only external excitations is the following [37]: if the nonlinear damping model is of
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the form

_+t,(
o.,2oZ2 + Jc2

2
)_.+ ,.,gz = 0.n(t)

then the stationary first order density is given by

.tO

t 5I'1 _ exp[-  ,( )dzle,o
C Wo

Next, let us consider the case D(x, y) = I_k 2 )y. In this case, the stationary

density of (1) is given by

4_wo w_x _ + y2 27/'_
ps(x,y) Cexp[

0.2 2 0.2 Jo _(z)dz] (37)

From (37) one can realize the following:

1. if _t(.) is a polynomial such that _u(x) > 0 for x large, then all the assumptions

(A1)-(A3) are automatically satisfied;

2. after reaching stationarity, z and _ are uncorrelated, but are not independent

because p(z, _) is not separable unless in the trivial case g(E) = const., which

reduces to a linear damping problem.

For later convenience, let us introduce the notation

rn(k) d__ x _ exp[- x- _-_ p(z)dz]dx

k = 0,1,2,...

Then the normalizing constant C can be written as

2_"

1/C = --re(O)
VJO
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Through substitution of variables

x = 1/_op cos O
y = psinO

we can write

mi,j

C [2.
_÷-_Jo

{o either i or j is odd

both i and j are even

p(z)dz]dx

(38)

In (38), we have used the following identity

o2_cos_0 sin) OdO

0 either i or j is odd
2B(L'_-21, _) both i and j are even

where B(., .) is a Beta function which has the following relation with Gamma func-

tion

B(_,y)= r(_)r(y)/r(_ + y)

from which (38) follows.

In addition, (38) immediately implies that

i _mj,i i, j = O, 1,2, •Womi,j = ..

from which one can be obtained from the other.

Therefore, the problem of computing mij becomes that of evaluating the inte-

g_ah m(0) _-d those necessary m(_) for i, j both even.
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Notice that (32) is not exactly a perturbation expression because the first term

contains m2,0 which depends on 7. In this particular case that D(x,y) being of

the form/_( 2 )y, we can obtain the perturbation expression of m2,o and hence

obtain the perturbation expression of Cxx(w).

,4_+_ _,
Corollary 2 Suppose D(x, y) is of the form p( 2 )y, then

a 2 - 2"y¢_
+ o(-r_)

0.2

(,,,, _ ,4)_ + 4_,Oo_,O_
_z'(4_Oa") 2

-'y[(_ - _o_)_+ 4_o_] _ + 0(-?)

(39)

(40)

Proof: First, computation gives

(41)

where

fo°° foxl j -= X j p(z)dzexp(-_--2°x)dx j = O, 1,2,...

Successive integration by part gives

h
0.2

(4-_o)_k!Io
0.2 oo k- I 0.2 j

+ 4--_ofo [_-'(4-_.)J_(zk)]Mz)exp(-_ 2°z)dz
j=O _ 0

(42)

Therefore, we have

0.2 23,

(Trio)'k!- o.z

.oo k-a 0.2 d j . . 4_Wo
x Jo [_"(='7--')i-ff'_(x")lu(x)exp(-_z)dz

j=o '}_o ax 0.

+ 0(_?)
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In particular,

re(l)
re(O)

a 2 2"r

4_03o 4_03o

x _° /cczp(z)exp(-_2°z)dz +0('72)

a 2 - 27¢_ + 0(72)
4_03o

where we have used the relation

which will be proved in Theorem 4.

x#(x)exp(--_2°x)dx

Then, by (38), we obtain (39). (40) is easily seen from (39) and (32). []

In the case D(z, y) is not of the form _u(_2-_+_)y, approximation approach has

to be made.

\

3.2 The Stationary Probability Density in Gen-

eral Cases

For simplicity of notation, we surpress the damping term 2_03o_ + 7D(x, :_) to, say,

simply D(z, _). Then the nonlinear damping model (1) is rewritten as

+ D(z,_)+032oz=an(t) (43)

What we propose is to approximate the exact model (43) by the following mod-

ified model

where p(E) minimizes

fo

,03_)z2 + y2
+ #( "i )x + 03g_ = _,,(t)

[D(_ sin¢, _ cos¢) - .(E) vS-_cos¢]_d¢
030

(44)
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and is given by

,(E)- ..,o
sin ¢, _cos ¢) cos ¢d¢ (45)

Presently, the problem of giving a precise estimate of the error of the above

proposed approximation is still open. But we do have the following side evidences.

Theorem 3 lf D(z, y) is even with respect to x and odd with respect to y, then both

the exact model (43} and the modified model (44) have the same Krylov-Bogoliubov

approximation [48].

Proof: For the exact model (43),

da( t_..._))= 1 fo2_ D( a sin ¢, awo coS ¢ ) Cos Cd¢ (46)
dt 2tWo

By the assumption on D(x, y),

d¢(t)
dt 1 fo 2_ D(a sin ¢, aw0 cos ¢) sin ¢d¢2r_oa

1 f:_r D(a cos ¢, aw0 sin ¢) cos ¢d¢
7l'oJoa

= 0

For the modified model (44), the Krylov-Bogoliubov approximation is given by

fo °_2a2da( t ) = 1 2_ lz( Z-_ )woa cos 2 ¢d¢
dt 2_rwo

a .w_a 2 .

=

_ 1 fo2"D(asin¢,woacos¢)cosCd¢
2_t,d 0

de(t)
dt

1 t2- t.d2a2
[ /_(Z.._.)woacos ¢ sin ¢d¢

2rwoa Jo

= 0

Therefore, (43) and (44) have the same Krylov-Bogoliubov approximation. D
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Theorem 4 lf D(x,y) is even with respect to x and odd with respect to y, and let

¢_, ¢_ correspond to the exact model (_3), ¢_, ¢_ correspond to the modified model

(_4), then

Cx = ¢_"=0

4_Wo fo _¢_ = ¢; = xu(x)exp(-_-_° x)dx

(47)

(48)

Consequently,

E D(x(t + r),y(t + r))= E )y(t + r)

y(t) y(t) 2
(49)

Proof: (47) is obvious because both D(x, y) and the corresponding/_(_)y are

even with respect to x.

For (48), we have the following

, = [[ ,W2oz2 + y2)y2_expt___ -tw°z'2_Wo, 2 2 + y2)]dxdy

/oo [2,_ r 2 02_WO exp(__2Or2)rdOd r= p(._-)r 2 sin 2JO JO _0 "2

fo°_Jo2'_lfo2"D( r sin ¢, r cos ¢) cos CdCr sin2 0
oJ o

x 2_Wo 2_wo r_ _rdOdr
-- exp(- 7 ,

= fo_C fo2'_D(_oSin¢,rcos¢)rcos42d¢

x _ exp(_ 72_wor2 /_rdOdr

- y)y-_-_-a2 expt----_-(wgx 2 + y_)]dxdy

(50)

- Cv (51)

The second equality in (48) is easily seen from (50). []
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The solution of the stationary Fokker-Planckequation correspondingto (44) is

given by

p,(x,y) = Cexp[--_ fo_ ,_(z)dz] (52)

where

/o1 _ 2_r exp[- I_(z)dzldp
C Wo

Example 3: Again, consider the saturation type active damping model (35).

(53)

By the identity

_/2tan_l(bcosx)cosxdx = r v/-l + b2 -1 b E y_l
2 b

one can compute

/_(E)

4

f0_I2_oV_cos ¢ + tan-1 (bv/_ cos ¢)] cos ¢d¢
- rv_T

= 2_0 + A v/1 + 2b2E- 1
bE

And consequently, one has

2 fE
/_( )dz-_ Jo _

2_o (2E) - _/l

4A

+ 2b_E

+_-_7 ln[1 + v/1 + 2b2E] + const.
uoo

The solution of the stationary Fokker-Planck equation:

(54)

p(x,y) = C[1 + _/1 + b2(w_x 2 + y_)]_-_

4A

×_xp[--'-_(_gx__. +y_)- _J,_ +b_(_gx_+ _)]
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where

1 T _ 2_0_0 x

- wob 2 exP(a-"_b_)

floo __, 4_ . 2_Wo 4_ v_dxx (1 + 4x)_exvL-a-Z-_x - -_

It is easy to realize that p(x, y) achieves maximum at the origin.

(48) provides a simpler means of computing Cv" From what follows, one can see

Cv can be easily obtained without employing the integral identity (36) as in Example

°

By (48) and(54), we have

4(Wo [oo _/1 + 2b_x - 1 4_WOx)dxG - a2 J0 b exp(- a2
2 o_ ab ,2_Wo,

/ _v'_'_ - 1)e-V2 dY= -b ,,. Y(_Y exPtb-_a2)

b2a 2

w

(substitution of variable 1 + 2b2x - 2_Wo y2)

a e-V2dyexp( ) (integration by part)

v_o r-__ ¢(4_°)] ,2_o
2_ L" a'--"_ expt b-'_a2 )

which is the same as obtained in Example 2.

33





Chapter 4

The Spectral Density of

Nonlinear Damping Model:

Multi DOF Case

4.1 Introduction

As indicated in the first part of this work [70], the problem of characterizing the

damping mechanism in flexible structures has received renewed attention in recent

years in connection with the need to stablize flexible flight structures such as an-

tennas deployed in space. Experimental evidence [8] suggests the need for nonlinear

damping model and the need to consider the effect of random disturbances due to the

uncertainties in system parameters and the environment. One of the most impor-

tant subjects in nonlinear random vibration is to obtain the second order statistics,

i.e., correlation function and spectral density of the stationary response, because
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they provide average amplitude and frequency information about the sample histo-

ries. Unfortunately, up to now, the only practicai method available is Monte Carlo

simulation and there is no analytical technique for the second order statistics of

nonlinear systems [32]. This paper presents an analytical technique for computing

correlation function and spectral density of the stationary response of n-DOF non-

linear damping model subject to white noise excitation. The single DOF case was

fully investigated in the first part of this work [70].

The basic nonlinear damping model we consider is, for x(t) E _Y',

M_ + Do_c + "rD(x,_) + Kx = an(t) (55)

where "r > 0 is a small constant because the damping in flexible space structures,

whatever its nature, is small. Here, M > 0, Do > 0, and n(t) is m dimensional white

noise, a is an n x rn matrix. Since we are only interested in oscillation problem, we

assume that (55) has no rigid body mode, i.e. K > 0.

The corresponding Fokker-Planck equation is easily seen to be

0p
rot - -YTV=P + V_. [(M-1Kx + M-IDoy)p]

q-'rV_ . (M-' D(x, y)p) + 2tr(M -1 aa TM-'v_p)

= Lop+TV_.(M-1D(x,y)p)

lirap(t, x,ylxo,yo)= 6(x - yo) (56)t--*0

Notations

z(t) d=_D(x(t),y(t));

po(z,y): stationary density of (z(t),y(t)), i.e., the invariant measure;

p(t, x, Ylxo, Yo) : the fundamental solution of (2);

po(t, x, y[xo, yo) : the fundamental solution of (2) with 7 = 0;
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T(t) a__aexp(Lot);

q(t, s,x, ylxo, yo) da ff _2,,D(u, v)po(t - s,x, ylu, v)p(s, u, VlXo , yo)dluldlvl.

It is well-known that po(t, x, YlXo, yo) is a 2n-dimensional Gaussian density func-

tion. Its mean vector and covariance matrix are given by

¢2,(0 ¢_2(t)

where the matrix A is defined by

A_

and

r (t) f0'eA('-')( 00
Later on, we will need the notation

xo)
Yo

2n×2n

eAr(t-s)ds

E_ d_ lim E(t)= (Pnt--.oo P_ P12)p22
2nx2n

and without ambiguity we will often denote E(t) by E.

(57)

(58)

(59)

Assumptions on D(z,y)

(A1) Each component of D(x, y) is differentiable with respect to y;

(A2) 3Ix" > 0, k > 0 such that IIO(z,y)ll < K[1 + (llxll_+ Ilyl12)_] for (x,y) E/R2";

(A3)/_2.(llxll 2 + IlYll2)kpo(X,_)dlzldlYl<_ for all nonnegative integers k.

Of course, to satisfy the energy nonincrease requirement, we also need

yTDoy + 7yTD(x, y) > 0 (x, y) E J_:_'_
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4.2 An Equation of Spectral Density

Lemma 4 Under assumptions (A2} and (A3}, it holds

lim q(t,s,z, Ylzo, Yo ) -- 0 V O < s < t,
Ilxll_+llvlff--._o

(Zo, yo) E _2.

provided

lim p(t,z, ylxo, yo ) = 0 Vt > O, (xo, yo) C #t 2"
Ilxll_+llvll_--.¢_

PROOF: First, by Schwarz inequality, we have

IIq(t, s, x, ylxo, yo)ll

<_ //_; llD(u,v)llpo(t - s,x, ylu, v)p(s,u, vlxo,yo)dudv

<_ [ff mollD(u,v)ll_p0(t- s, z, ylu, v)p(s, u, vlzo, yo)dudv]a/2

×[f f jm po(t - s, z, ylu ,v)p(s, u,VlXo,yo)dudv]l/ 

(60)

(61)

The second square root term goes to 0 as Ilxll 2 + Ilyll2 _ _ by the assumption

(61). Therefore it is sufficient to show that the first square root term is bounded for

all (z, y) E _2..

(62)

In fact, we have

/'t

JJ_llO(u, v)ll2po(t - s, x, ylu, v)p(_, u, vlxo, yo)dudv

1 ff
< (2rr)"_/detZ(t- s) r_"llO(u'v)ll2P(S'u'vlz°'Y°)dudv

In addition, by assumptions (A2) and (A3), we have

ffr..ffr_, liD(x,_)llSp(t,_, yl_o,_o)po(_o,yo)dxodyodxdy

<_f f m g2[1+ (llx[I2+ II_ll=)k]2po(z,y)dzdy
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By Tonelli's lemma, we know that

IID(x,y)ll_P(t,x, Ylxo, yo)po(xo, yo) c LI(_ 2" ® _2,_)

Then, by Fubini's theorem, we know that

//m211D(x,y)ll2p(t,z, yl.,')dxdyp,(', ")

which implies

LX(_ :_)

IIO(.,.)ll2p(t,.,.Ixo, yo) _ L1(_ _)

Therefore, by (62), the first square root term is bounded for all (x, y) E/R _. Thus

the claim is proved. []

In the following theorem, we establish an equation for the correlation matrices

which plays a fundamental role for later development.

Theorem 5 Under the assumptions (A1)-(A3), the following equation holds:

R_(_') R.x(0)¢_rl(_)+ R._(0)¢_(_)

[" Rxz(s)M-_¢T:(r - s)ds
Jo

(63)

for v > O.

PROOF: (56) is equivalent to the following integral equation

p(t, x, Ylxo, yo)

or more explicitly,

v(t, x,yl_0,_0)

po(t, z, y Izo, y0)

+_ ['T(t - _)v,. [M-1D( z, y )p( s, z, ylxo, yo )]ds
JO

_(t,_,yI_o,y0)+__]o'_]_po(t-8_ x_ yll2, v)

xV_[M -a D(u, v)p(s, u, VlXo, yo)]d[uldlvlds (64)
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Performing integration by part in the second term and noticing the relation

V_p0(t - s, z, ylu, v) -¢r2(t- s)vzp0(t- s, x, ylu,v)

- ¢_r2(t- _)v,v0(t - _,x,ytu,v)

we obtain the following

fra po(t - s,x, ylu , v)V,_. [M-1D(u, v)p(s,u, vlxo,yo)]dNIdlvl

= - fm2[V_po(t - s, z,ylu , v)]TM -I D(u, v)p(s, u, V]Zo,yo)dl=ldlvl

-- /_2 [V_po(t- s,x,y]u, v)]T¢_2(t-- s)M-_D(u, v)p(s,u, vl_o,yo)dl=tdl_l

+ fR_ [V_po(t- s,x, ylu, v)]TtI'22(t- s)M-_D(u, v)p(s,u, vl_o,yo)dl=ldlvl

-- V_-j(o ¢_2(t - _)M-_D(=,V)po(t- _,_,Yl=,v)v(_,",ol_o,_o)dl"ldl_l

÷%. f,_o ¢_=(t- s)M -' D(=,v)po(t - s,_,yl=, v)p(,, _, Vl_o,yo)dl=ldlvl

V_. [¢a2(t - s)M-aq(t,s,x, YlZo,yo)

+V_. [¢22(t- s)M-lq(t,s,x, ylxo, yo)

Therefore, we obtain the following integro-differential equation for p(t, z, ylZo, yo):

p(t, x, yl_o, yo) po(t, z, _lzo, y0)

+"/Vz. fot_,2(t- s)M-lq(t,s,x, ylxo, Yo)ds

+TV_. [t¢2_(t- s)M-'q(t,s,x, ylxo, Yo)ds
dO

(65)

Based upon (A2) and hence Lemma 1, we find that the marginal transition

probability density p(t,,XlXo, Yo) satisfies the following equation, by integrating (65)

with respect to y over/_,

p(t, zlzo, yo) po(t, XlXo, Yo) + 7V_" fot _12(t - s)M -1

x f_. D(u, v)po(t - s, zlu, v)p(s, u, VlXo , yo)dl=ldlvld_ (66)
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After integration, the third term vanishesby Lemma 1. And in (66), po(t,x[xo, Yo)

is an n-dimensional Gaussian density with mean

¢,,(t)xo + ¢,_(t)vo

Multiplying (66) by xo:rTp,(xo, Yo) and integrating with respect to (x, xo, yo) over

ffi_3", we obtain, for t > O,

- fR3. x°xTp°(t'xlx°'Y°)P'(X°'y°)dlxldlx°ldlY°l

x p(s, u, vlxo, yo)dluldlvldsp,(xo, yo)dlxldlzoldlyol

= J_. Zo[¢xl(t)Zo + ¢,2(t)yo]rp,(Xo, yo)dlzoldlYol

×p(,, =,rico,yo)dluldlvlp,(xo,uo)dl_ldlxoldlyolds

= n=(o)¢T,(t)+ R_(o)¢T_(t)

×p(s, u,vlxo,yo)p.(xo,yo)dluldlvldlxoldlYold_

= R=(o)¢,r,(_)+ R_(o)¢_r_(t)

-_ fo' n.,(_)M-'¢T_(t - _)d_

R_(t)

(67)

[]

The significance of this theorem is that R_(r) is expressed in terms of R_(r),

while the unknown matrix R_(r) appears only in the first order coefficient of 7-

Therefore, if one obtains the kth order perturbation of R_,(r), then R_(r) is im-

mediately given by (63) with error in the order of O(7k+2).
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4.3 The Spectral Density

In this section, we establish the formula of the spectral density of (55) with 0(72 )

accuracy. First, we need two lemmas.

Lemma 5 Assume the pair

I °){A, )
M-la

being completely conlrollable, then the following matrix relations hold

E(_) = _c_ -- eAtEooeArt

x -_ - x-'_(x2 + _'r:_e_')-_/'r_-' = r_2

(E_¢ 1 + eAr_E--leAt)--le AT_ __ _ooeATt_¢l_

(68)

(69)

(70)

PROOF: Under the controllability assumption we can know that both _(t) and Eoo

are positive definite for all t > 0.

Let us define

_(_) ded:_oo- eA'_e A_'

To show (68) is equivalent to showing n(t) - _(t).

In fact, since

\

0 0 _ eAT(t_,)d,.s

0 M-laaTM -1 ]

we know that E(t) satisfies the following linear differential equation

-_._,(t) = AE(t) + E(t)A T + (71)
0 M-laaTM-1
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Letting t _ oc, we obtain the relation

[ 0 0
-A_,- _ooA T = I I

0 ll¢-lao'Tll1-1 ]

by which we also have

d-

Z_(_)

Obviously. E(t) and _(l) have the same initial condition

E(0) = E(0) = 0

(72)

Therefore. the uniqueness of the solutions of linear differential equations implies

2(_) = _(t).

By the matrix inversion formula

(M1 + M_M3314)-' = 31i _ - M?aM2(M3 _ + M4MT_M2)-'M4M7 _ (73)

we have, noticing (24),

_-1_ _x-'-l_..4t/x-'-lk_c_ + cATi_-leAt)-leArt_ -1

(E + c '_*_" cA_t) -1

__ V'-I

For the proof of (70), we again use (73) and (68) to obtain

(E2_ 1 + eAr_E-leAt)-le Art

= [E_ - Eo_cATt(E + eAtEooeArt)-leAtEoo] eArt
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= 2_eAr'(l-- X;_leatZooeArt )

= _ooeArt_ol_

D

Lemlna 6 Assume 1]_¢ malrLv pair

(o){A, )
M-la

is complctcly controlhlble. 77_en for the linear damping model

MS: + Dk + Kx = an(t)

WC ]}(I t'6

E J(x(t + _-),v(t+ _))= s=ea"':::,, _

W ]I C }'(

T

x exp[- 1/2 _2 ]dlzldlv

y y

PROOI:: Lel u._use the tbllowing notations:

def
Xo --.¥ der=

(74)

(75)
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By (69) and (70), wehave

(x - eA'Xo)TZ-'(X-- eA'Xo)+ Xgr,2Xo

= .x-_[_-, _ z-,_A,(s2 + _.',z-,_,)-,_"r_-'lX

×[Xo-(eA"'Z-'_A'+ Z2)-'_T'Z-'X]

= xT2L_X

"}-(XO V" ,,aTtv'-I v_Tt,,ATtV'-I_ at Eooe-lrtE_olX)

Then

z(f))
E DT(x(t + r),y(t + r))

v(t)
1

= ff_,:,,//_XoDr(x,y)

x _xp[-1/2(x - _A'Xo)rZ-'(,)(x - cA'Xo)]

1 - T _"_- 1 r , r

x 2r, ,_ exp(-1/2X o -o_ Xo)dlX ]dlXo[
v, w,

l . ,T -1 - T

= {//_2D(x,Y)2r.l,_)exp(-1/2X Z_X)/JR,.X°

1 exp[--1/2(Xo -- SooeAr'Z_olx)T(z_o 1 -t- eAr'Z-'e At)
x2r,_

X(Xo-- _,_ cAr'E2)X)ldlXoldlXI} r

1 exp(_I/2XTE2¢,X)
= [//_2,,D(x,Y)2r,_

x (S_ea_'Z;! X)T dlxldlyl] r
_/12(_)1122 + _A"E-'(')cA'I

,. c_',,_-, H XDr(x,y) 1 exp(_l/2Xrr.2jX)dl_ldlYl
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,..a ¢x.._ C ._-a O._

%

I1a the above, we used the fact that

IZ;(t)[l_ _ + eAT'z-_(t)e"[ = 1

which could be easily verified by using (70).

Vt>0

Theorem 6 Under the assumption of the complete controllability of

I °){A, }
M-,a

the spectral dcT_.sil 9 matri.r of (55) is given by

wilh

A m

R..(O)(D - iw.M)G(iw) + R,:_(O)MG(iw)
T

0 ,hi -i._M 0 G(i_)

El

(76)

w ]l C l'c

xE2 (¢')a(iw)+O("/_)_,v (77)

G(i.:) d_=r(_w2M _ iwD + K) -1

PROOF: First of all, it should be noted that (63) is valid only for r > 0. However,

by the basic property of correlation function matrix

=
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wecan easilyobtain Rx.(r) for r < 0 as

R=(r) = n;_(-_')

Therefore. if we define

_,:,:(w) a,j _o°°Rx.(r)ei,,,,-dr

then we have the following expression for the spectral density matrix

A s%=(_) = ,i,=(.,)+ %x(,o)

Next, to find tile expression of _=_(w), we need to evaluate

o ¢_ eAt eiwtdt

To this end. we perform integration on both sides of

_(i.:)

i,,_t d at
e -_Te = AeAte i''t

= (-i"-'12.x2,_ - A) -1

o a(i_.,)

to obtain

where tlle las! equality can be easily verified.

\

D - iwM M

)-K -iwM

If one writes

n=:(.,) n_?(,) +'r(
then, by Lemma $,

. oo °
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which implies

R(0)(_" _,_ = ( I,,×,,0

And correspondingly, we have

T

T

( )(s)e d_ = I_×.
0

× 2_ 1

Thole, fore (77)becomes obvious based upon (63), (78) and (80).

(80)

D
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Chapter 5

On the Stationary Probability

Density: Multi-DOF Case

5.1 A Necessary and Sufficient Condition of Un-

correlatedness

A natural but nontrivial question to ask is in the stationary state, whether x and

are uncorrelated as they always are in single DOF case. The answer is no, in

general. Such an example will be given after the following theorem. Then the next

immediate question is under what conditions x and _ are uncorrelated.

concentrate on only linear model

M_ + Dk + Kz = an(t)

Next, we

(81)

for which we have the following conclusion

Theorem 7 Assume the matrix A2,,x2. is stable. Then, in stationary state, x and

are uncorrelated if and only if there exists a self-adjoint, nonnegative matriz P.x.
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satisfying

KPM = MPK
(82)

DPK + KPD = aa T

And in this case, the stationary density is 2n-dimensional Gaussian with mean

0 and variance

r,_ = >__0
0 M-1KP

PROOF: (=_) First we establish the following equation concerning the structure

of the variance matrix _

-P12 M-I(KP1] - DP12)

where we use the notation

In fact, by the equation,

( o ,"_ _21(t) ¢22(t) = -M-1K -M-ID ¢_,(t) _22(t)

we have the following relations

(83)

¢1_(t) = ¢_(t) (84)

_i,2_(t) = -M-' Kdp_2(t)- M-1D¢_2( t) (85)

Also, by the equation

Jo( )= eA t 0 0 eArtdt

0 M-]aaTM -1

= fo°°(O12(t)QOT2(t) O12(t)QdgT_(t))dt
o_2(t)QOT2(t) ¢22(t)Q¢T2(t)
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where Q = M-laarM -1, we obtain, in the light of (84),

/o°P12 = ¢,2(t)Q¢_2(t)dt

= fo °° ¢lz(t)Q_T2(t)dt

= - fff¢_2(t)QCT2( t)dt

= _IT

i.e., P12 is skrew-symmetric.

Similarly, by (84) and (85), we have

L_P22 = ¢22(t)QCT2(t) dt

= foCC¢_2(t)QCT2(t)dt

= _ ]o_°¢22(t)Q¢_r2(t)dt

= M-1KPn + M-1DP T

= M-I(KPn - DPI2)

Noticing that, by (83),

x and y being uncorrelated

and that E_ satisfying

0 M-'KPn

AE_ + EooA T + (o o )0 M-1aaTM -1

then it must be true that

M-'KPn = (M-'KPn) T

M-IDM-'KPn + (M-'DM-1Kpn) T

5O

=0

= M-1aaTM -1

(86)



which can be easily reducedto (82).

(_==) Suppose P _> 0 satisfies (82), then we know

0 M-1Kp

satisfies (86). On the other hand, the solution of (86) is unique, based upon the

following general fact [45, p527]: /st A,,,×,,, and B,_×,, have no common eigenvalues,

then the matriz algebraic equation

T_×=A=×= - B,, ×,.,T,, ×,., = C,.,×_

has a unique solution T.x=. Therefore, the E_ defined above is indeed the station-

ary covariance matrix, which is block diagonal. D

Now let us consider the following example in which po(X, y) is not separable, i.e.

x and y are not uncorrelated.

Take, for x E J_i_2,

M _ 12× 2

D = (dl 0

0 d2

K= ( 00

with dl, d2 > 0

with w_ # w_

Obviously the corresponding matrix A is stable. And it is easy to verify that

/°){A, }
a
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is completelycontrollable, i.e. Eoo> O.

Next, weobservethat for this example,

However, on the other hand,

KPM = MPK

==,. PK = KP

( )=_ p= Pl 0

0 p2

DPK + KPD = 2
( dlp,w_ 0 ) # atrT0 d2p2w_

i.e., there is no such P2×2 satisfying (82). This, by Theorem 3, implies that z and

are not uncorrelated in steady state.

Next, we make the following observations:

1. (82) is equivalent to

KPM = MPK (87)(_DM-1)(MPK) + (KPM)(-DM-_) T + aa T = 0

If D > 0, then -DM -1 is stable because -DM -1 has the same eigenvalues as

-M-1/2DM -1/_ which is negative definite. Then the unique solution of (87)

is given by

ZMPK = KPM = e-DM-'taaTe-M-'Dtdt (88)

Therefore, the necessary and sufficient condition for x and _: to be uncorrelated

in stationary state is that

P = M -1 e-DM-lttrtrTe-M-IDtdtK-1

is self-adjoint and nonnegative.
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2. Let P be the self-adjoint, nonnegative matrix satisfying (82), then P > 0 ¢==_

( DM -1, a) is completelly controllable.

3. In the particular case, D = koaa T, where k0 is a scalar constant, we can

take P = _-_koK-1 in (82). In this case, the stationary probability density is a

function of the energy E = 1/2(xTKx + yTMy),

p,(x, y) = (_)"(IMIIKI)-m exp[- ko(XTKz + yTMy)]

5.2 Energy Type Nonlinear Damping Model

In fact, this conclusion can be generalized to the following type nonlinear

damping model.

Theorem 8 In the following type nonlinear damping model

M_ + i_( xrKDx + yTMDY)aaTDjc + Kz = an(t) (89)
2

we assume D is positive definite and commutative with K and M, and (89) is stable.

Then the stationary probability density is given by

p.(x,y) = p.(ED) = C exp(--2 fo ED I_(z)dz) (90)

where

Eo = 1/2(xTKDx + yTMDy)

2(.-1)

/? /o1/C = 2"(IKIIMIIDI2)-l/2( II lj) z"-lexp(-2
j=O

I_(z)dz)dx (91)
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with lj n_ fo sinj OdO which has the following iteration relation

I 0 _ "Jr

11 = 2

j--1
Ij - J

Ij-_2 j = 2,3,...

PROOF: Assume that ps(z, y) is a function of ED, then

dps KDxVxpo(x,y) --
dED

dp,

V_p,(x,y)- dEDMDy

Also, we have the relation:

tr[M-'aa T M-'V_p.(x,y)] = V, . [M-'aa TM-'V_p.(x,y)]

Therefore, by noticing the relation

--yTVzp, + V v • (M-1Kzp,)

= --yTVxp , ÷ zTKM-1Vvps

= 0

the stationary Fokker-Planck equation

i -I T -1 2

0 = --yTVxp, + V_. [p(ED)M-1aaTDyps + M-1Kxpo] + _tr(M aa M V_p,)

(92)

is easily reduced to the following form

...... l aaT D dp° 1
0 = V_. [#(ED)p,M-1aaTDy + I/zM y-_D j

or

$

0 = V_. [M-laaTDy(p(ED)po + 1/2d-'_D)]
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Then it is sufficient for po(x, y) -- po(ED) to satisfy

alp,
1/2"_D + I_(ED)p. = O

or, equivalently,

f0 EDpo(z,y) = p,(ED) = Cexp(-2 l_(z)dz)

The integrability of p°(x, y) on/_2, is guaranteed by the fact that both KD and

MD are positive definite under the assumptions on D.

The normalizing constant C can be obtained by first making the following vari-

able transformation

then changing (u, v) into 2n-dimensional polar coordinate (r, ¢1,"', ¢2,-1). D

REMARK: It is quite natural that in muti-DOF case the stationary probability

density is a function of lED instead of E. Consider a simple example,

mo_ + D_ + w_x = aon(t) (93)

where m0, w0_, a0 are positive constants, while D is a positive definite n × n matrix.

Obviously, the corresponding undamped system is uncoupled and it is easy to

realize that D > 0 implies (93) is stable.

In this case, (82) reduces to

(mowS)"�2

therefore,

and

p°(x,y) =

a2oI
DP + PD = o.,_)

[Dlexp[-1/a_(w_x 7"Dz + rnoy r Dy)l
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5.3 An Illustrative Example

In this subsection, we consider the following special type of nonlinear damping model

M_ + (do + 7_(E))D_ + Kx = an(t) (94)

where D = griT, do > 0 and _u(E) > 0 for large E.

We need to find the four n x n matrices ¢., Cv, R==(0) and R=,(0).

First, by Theorem 4 we know that the covariance matrix of the corresponding

linear system is given by

0)0
and therefore, by definition,

= /_. p(E)yy TaaT(d.d-°°r)"\/IKilMlexp[-do(xTKx + yTMy)]dizidiy I

= f_,, "(11''11=+2II_II_)M-V2vvTM-V'ggT("_)"

× exp[-do(llull_+ 11_ll2)]dNIdlvl

× exp[-do(llull 2 + IlvllZ)]dluldlvl

= M-'agrLOOdrLl"d¢l,,_iLl"d¢l,_l...Ll"d¢ir'cos'¢i_i(rll 2)

do n _dorlr2n_ 1 sinl._z
×(-_-) _ ¢,..-sin¢2._2

= M-lag T [¢¢(2a°).z,_e-i_o:,(x)dx
JO

X2/o/1--" ./_,,-3(I2,,-2 - ]2,,)

_ l(,.,-1)

= M-igaT_-_-'_n-_,nn yI 4
ri/r j=o
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where

Similarly, we obtain

d_f f0 °°a. = (2do)" z" #( x )e-2dO_ dz

¢_ = 0

P_d0) = o

By noticing that the corresponding stationary density p,(z, y) is given by (90) and

(91), we obtain

R_(0) = mj_-' (95)

where

1 fo°° z= exp(-2dox - 2"7 f_ #(z)dz)dx
rt2_/ --

n fo°° x"-I exp(-2dox - 2"7 f_ #(z)dz)dx

By substituting the computed matrices Cz, ¢_, Rz_(0) and R_(0) into (77), we

obtain

d_=_(w) = m.,K-'(D- iwM)G(iw)

2(.,-I)

+7n-_.( H ljlG(iwlaaTG(iw) + O(7+/
j=0

Consequently, the spectral density matrix is given by

A •<t,.=(,,.,)= ,i,,+(,.,)+ %.(,.,)

= 2dom._G(-iw)aarG(iw) +

20,-1)

+27n--_( 1-I I_)_{G(iw)aaTG(iw)} + 0(.7')
j=0

By straightforward calculation, we know

'_ = 2Eo- "7_-5+ o(-_:)don.

(96)
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Therefore,the perturbation expressionof the spectraldensity matrix _xx(w) is given

by

1 2(.-I)
G(-iw)o'o'TG(iw) + 27,_n[_"g_( 1"I IJ)_{G(iw)°'°'rG(iw)}

j=O

-_.G(-iw)aarG(i_)] + 0('72)
(97)
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Chapter 6

Infinite Dimensional Nonlinear

Damping Models

In this chapter, we study energy type nonlinear damping model in an infinite dimen-

sional setting. According to the geometry of the structures considered, energy type

nonlinear damping model is divided into two types. The following two examples are

considered to be representatives of the two types of models, which, later on will be

called TYPE I and TYPE 1I model, respectively.

6.1 Nonlinear damping models- the formula-

tions

TYPE I Model:

We consider a uniform Bernoulh beam with length L, and both ends hinged. Let
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u(t, s) denote the small deflection. Then the undamped model is given by

{ _(t.s) + a:_..(t, s) = 0
u(t. O) = u.(t. O) = 0

u(_.L)= u,,(t.L)=0

0<s<L
w

(98)

where super-dots represent derivatives with respect to time t, and the primes deriva-

tives with respect to s.

We introduce the Hilbert space H = L2[0, L] and the inner product defined on

it

_o L[=.v] = =(s)v(.)ds

Let the operator A be defined by

Au = a2u..(t, s)

with domain

Z)(A) = {u e H l u" • L_[O,L];u(O) = u_(O) = u(L) = uY(L) = 0}

Then, it is easy to see that

for

Aa/_u = -au.(t,s)

u • :D(A 1/2) = {u • H luu • L2[O.L];u(O) = u(L) = 0}

And the total energy, the sum of strain energy and kinetic energy, is given by

E(t) = 1/2([Au, u] + I1_,11_)
L

= 1/2 fo [a_u"Ct'_)_+ _(t's)_ld'
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If we use proportional damping A 11_ as linear damping and Eq(t), q > 0 as

nonlinear damping, then the total damping is

2_ A:/_it + "yEq( t)i_

= +  {1/2 ]0:[a2u.(t.s,) +

Using x(t) to denote u(t, .), we can write the complete model in the following

abstract form

_(t) + 2_ml/_k(t) + "yE(t)qk(t) + Ax(t) = 0 (99)

TYPE 17 Model:

We consider a flexible beam with a tip mass m at one end and with the other

end clamped. We may assume that either the motion occurs only in the horizontal

plane or the structure is in micro-g state. Therefore we do not have to take into

account the effect of gravity.

The undamped model is given by

EI
5(t,r) + --uUU(t,r) = 0 (100)

P

EI
_(t,L) - --um(t,L) = 0 (101)

m

u(t,O) = u/(t,O) = utt(t,L) = 0 (102)

Notations: u(t, r) transverse displacement at a spatial point 0 < r < L at time t > 0;

E

I

P

L

Young's modulus of the arm material;

area moment of inertia of the arm material;

density of the arm material;

mass of the payload including the end effector;

length of the arm material.
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Now, in order to give a complete formulation of the problem, let us introduce

the Hilbert space

7"/= L2[0, L] x/R 1

and define the operator A by

(a_u'm(') )Aw = -b2um(L)

7)(A)={w= (u('))u(L)

with

for Vto--

u(.) )EZ)(A)
u(L)

e _1="(') • L2[O,L],u(O) = u/(O) = u//(L) = 0}

where

a 2 = El�p; b2 - EI/m

for

The inner product on 7-/is defined by

1 fo L 1[w_,w_] = -_ u_(r)u2(r)dr + -_u_(L)u2(L)

uj(-) )•7-/, j=1,2wj = uj(L)

Then, by integration by parts, it is very easy to verify that

Zn[Aw, w] = lu.(r)12dr > 0 Vw• Z)(A)

and [Aw, w] = 0 if and only if w = 0, i.e., the operator A is self-adjoint, positive

definite and A -1 exists and is compact. Then by the spectral theorem of posi-

tive self-adjoint operators with compact resolvent, there is a sequence of increasing

eigenvalues

,_ < ,_ ___...
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associated with the corresponding eigenfunctions {¢.} such that

and {¢.} form an orthonormal basis in 7_.

With the above preparation, (100)-(102) can he rewritten as

_(t) + Aw(0 = 0 (103)

For linear damping part, we choose the following asymptotically proportional

damping

with domain

-awl(.) )Dw = b2 / aut( L )

_D(D)={w= (u('))u(L)

And it is easy to verify that

e H lu. e Lu[O,L];u(O) = 0}

_o L[Dw, w] = l/a lut(s)12ds > 0

i.e., D is positive definite on :D(D).

For nonlinear damping part, we consider the energy possessed by the beam alone

E_(t) = E(t)- 1._-gt,(t,L)2

= 1/2(fo L I,.,'t(t,s)ll_ds + 1/a 2foL I_(t,s)12ds)

E_(f) is the energy of the beam itself, the sum of strain energy and kinetic energy.

Then we use 7E_(t)tb(t.) as the energy type damping. We notice that

1/(2M)6(t, L) 2 is essentially the kinetic energy of the tip mass. The reason of ex-

cluding the kinetic energy of the tip mass in damping is that internal damping

mechanism should be dependent upon the beam material, not on any attatchments.
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energy of the tip mass in damping is that internal damping mechanism should be

dependent upon the beam material, not on any attatchments.

Then the abstract form of the damped model writes

_(t) 4- 2(Dtb(t) 4- 7E_(t)tb(t) 4- Ax(t) = 0 (104)

Next, let us consider the basic modes and frequencies of the model (103). We

will explicitly solve the eigenvalue problem

A¢,, 2= w.¢. ¢. • :D(A) (105)

Let

= • T_(A)

¢.(L)

then (105) is equivalent to the following two point boundary value problem (TPBVP)

{ "2¢-"(r) = C¢_(r)
b2 ¢,,m(L) 4- 2 (106)w.¢.(L) =0

¢_(0) = ¢.,(0) = ¢.,,(L) = 0

dd .,(P_a_2 Then (106) can be rewritten asLet w. = __ L ,' "

¢.(0) = ¢.,(0) = ¢.,(L) = o

The general solution of (107) is given by

¢.(r) = c1,. cos _--r + c_,. cosh _-r 4- c3,,, sin _--r 4- c4,,, sinh r

where c4,., i = 1,2, 3, 4 and/3_ are to be determined by (108) and (109).

(lO7)

(lO8)

(lO9)
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(109) implies that

¢.(r) = l[(cosh 8,'-_-r- cos"7"r)8__ .r_(sinh 8_._.r - sin +r)]

where an is a normalizing constant and

cosh 8,, + cos 8.
>0

"r,, = sinh 8_ + sin 8-

In order for ¢. to satisfy (108), 8_ must satisfy the following transcendental

equation

sinh & - sin & - %(cosh 8, + cos 8_)

+++[cosh 8.- cos 8,,- "r.(sinh 8.- sin 8.)] =0 (110)

which is equivalent to

1 + cos 8. cosh 8. + + + (cos 8. sinh 8. - sin 8. cosh 8-) = 0 (111)

It is easy to realize that

8,_ .---._ n r + r / 4 as n -.-. c_

i°e._

a2(8") 4 a2(L)4(n + 1/4) 4 as n ---+ oo
2

Finally, the norm_izing constants_. shouldbe chosensu_ that I1_-II= 1. By

tedious but straightforword calculation, we obtain

p L 2 1 + cos 8. cosh 8.)211/_
c_ = alL + m(_) ( sin & + sinh 8,, n = 1,2,.-.

Therefore, the eigenvalue problem (105) has been solved.

65



6.2 Some basic results

Notations:

E(t) = 1/2([A1/2z(i)'All2z(t)]+[x(t)'x(t)]); ( z)St

ED(t) = 1/2([Ax(t)'Dx(t)]+[Dz(t)'3c(t)]); (x)

(o) lu)r(w) = ; w =
-'rEq(t)v v

Then the nonlinear damping model

_(t) + 2_Dk(t) + 7Eq(t)_.(t) + Ax(t) = 0

can be recast into the form

dw(t)
dt

=_w(t)+ r(w(t))

The other notations are just as usual.

E 7"/E -----'D(A 1/2) _ H

E :D(.A) = :D(A) ® :D(D)

(112)

6.2.1 Existence and uniqueness

A. Lunardi [53] established the existence and uniqueness of solutions of the nonlinear

infinite dimensional system

e(t) = z.,,,(t)+ G(w(t))

by assuming

1. £ generates an analytic semigroup, which is asymptotically stable, i.e.,

sup{_(_); _ e a(£)} = -_0 < 0
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2. ¢(0) = 0,andC,(0)= 0;

3. If w(.) e C([to, t,]; _(f-.)), then G(w(.)) e

DL(8, oo) is the interpolation space defined by

Dz(O,_) - (=1=• X,[=]o= sup IIt'-°Z:e":=ll< _}
0<,<1

II=llo,.¢_.oo)= II=ll+ [=]_

C([to, t,]; Dz,(O, oo)), where

The proof is essentially the application of the fixed point theorem of contraction

mapping and interpolation space theory [18][64].

Therefore, to establish the existence and uniqueness of the solution of (112), it

suffices to verify the third assumption.

In fact, for any

= • c([to,t,]; _(_))
v(t)

[r(w(.))]e = sup IIt'-L4T(t)r(w(.))ll
o<,51

( o )___supIIT(t)._ II
o<,_<, -'_11w(-)lI='v(•)

=_ll_(')ll=_supllT(t)(-v('))o<:_<, 2_Dv(.)

Hence,

IIr(w(.))llv,.¢_.oo)

<

<

IIr(w(.))ll + [r(w(.))]_

_,11,.,,(.)11=,+=+ [r(w(.))]_

OO
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Theorem 9 For V wo such that Ilwoll <_ r for some r > O, there exists a unique

solution w(.) 6 C1([0, e¢_); 7"/f)Cl C([0, oo); :D(.A)) which satisfies (112).

6.2.2 Asymptotic Stability

Theorem 10 Assume that T(t), the semigroup generated by .A, is asymptotically

stable, i.e.

IIT(t)II_<e-_'; to 6 (O,_o)

for some _o > O. Then, V,16 (0,_o), there e_ists r = r(,7) > 0 such that for any

Woe Z_(.a) with I1_oll< r, we have

IIw(t)ll_ Ilwolle-"'

Proof'. For any 776 (0, To), choose fl > 0 such that 171 = 17-_-fl < tO O.

Let r = (_) qw_-r+_.Then, for VWo E 29(A) with [[Toll < r, we have
x,'yl

IIw(t)ll = IlT(t)wo+ 7 T(t - s)r(w(s))dsll

< e-"'llwoll+7 _-"t'-°_llw(s)ll2_+2ds

Then, we have

IIw(t)lle"' _0 t_< Ilwoll+_ e"°llw(s)ll2_+2d_

< Ilwoll+ 711,,,oll_+_ [' e"°llw(s)llds
dO

Then, by Gronwall's inequality, we obtain

IIw(t)ll _< Ilwollexp[-(_l-'rllwoll2q+l)t]

_< Ilwolle-"'

o
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6.3 An infinite dimensional Krylov-Bogoliubov

approximation

we have

2_[DJ:(t),_(t)] < Ilwoll-_e-'t(2E(t)) 1/2,

2. For nonlinear damping model

ff

A1/2D =

All _ <

for some p > O, then we have

2_[D_(t),_c(t)] < M_(2E(t)) 1/2, t > 0

where Ms depends on _, 7, TI,P and the initial state x(O), _c(O).
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DA1/2on T)(A) (113)

pD o- V(D) (114)

t>0

_(t) + 2_D_(t) + 7Eq(t)_(t) + Ax(t) = 0

6.3.1 Preliminary results

Lemma 7 Suppose .,4 generates an analytic semigroup T(t), which is also asymp-

totically stable, i.e., there ezists rI > 0 such that

IIT(t)ll < e-'t; t ___0

Then we have the following estimates for [msc(t),&(t)]:

1. For linear damping model

_(t) + 2_D_(t) + Az(t) = 0



Proof: (I) Since T(.) isanalytic,we have [15][58]

M1 e ntI[.a-T(t)ll< _ -

Then,

t , t>O

2_[D_(t),Sc(t)] = _[.,4 + A'w(t) ,w(t)]
2

= -[Aw(t),w(t)]

_< IlCtw(t)llIIw(t)ll

= IIAT(t)w011IIw(t)ll

M1 e nt< _- ilwoll(2E(t))ln
- t

(2) To prove the nonlinear version, we consider the quantity Eo(t) defined by

ED(t) = 1/2([Ax(t),Dx(t)] + [Dk(t),Sc(t)])

By (113), we can show that [Ax, Dx] > 0 for x E T)(A), and therefore

And, we further have

dED(t)

dt

Therefore,

ED(t) > O, t > 0

fo' fo'ED(O) -- ED(t) = 2_ IID&(s)ll2ds + "r

<_ E_,(O)

2_ IID&(t)ll2dt< ED(O)
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i.e., D_(.) e L2[0, oo; H].

In addition, by (113) and (114), we can have that for any v • :D(A'/_),

oo

IlAa/2vl[2 = _w_l[v,¢_]l 2
n_-0

< p2 _[D¢,,¢,12l[v,¢_]l =
n_0

= p211Dvll_

Next, we estimate

II fo'.AT( t - 8)r(w(s))dsll

Z'= II T(t- s).4r(w(s))dsll

= II_°tT(t-s)TE'(s)(-2_D&(s)_(s)) dsll

<_ "rgq(o) f' e"('-')[llAa/2&(s)ll2 + 4_2llD&(s)ll2]l/_ds

< 7Eq(0)(4_2 + p2)a/_ fo'e-,(,-O)llO_(s)llds

I'< 7E,(0)(4_2 + pZ),/2[ e-2,(,-.)dsl,/211D&llL, tO,_;m
2

< 7__(4_ + _._),/2E,(O)Eff2(O)- 2 rI

= _C0

Therefore, we obtain

2_[Ddc( t ), Jc(t )] = -[Aw(t),w(t)]

IIAw(t)ll IIw(t)ll

I'< [ll.4T(t)woll + II .,4T(t - 8)r(w(s))dsll]llw(t)ll

_< [-_llwolle-"' + 7Co]( 2E( t ) )11_

<_ M2(2E(t)) 1/2
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which completes the proof. 13

S. Chen and R. Triggiani [31] have given the sufficient conditions on D which

guarantee the analyticity of T(t) generated by A. That is, if for 1/2 < a < 1, it

holds

plA _' <_ D <_ p2A a

for some constants 0 < Pl < p2 < cx_, then T(t) is analytic. And it is further proved

that for 0 _< ct < 1/2, the semigroup is not analytic.

Theorem 11 For the following nonlinear damping model,

_(t) + 2_A1/2&(t) + -rE_(t)Jc(t) + Ax(t) = 0

its solution satisfies

x(t) = exp(- E'(s)ds)S(t)v(t)

where S(t) = e -_v'xt, and y(t) satisfies the following undamped equation with expo-

nentially decaying parametric ezcitation

.fi(t) + [(1 - _2)A - _'rEq(t)A _/2 + 720(t)]v(t) = 0 (115)

where O(t) is a function oft which goes to zero exponentially as t --¢ 0% if q > 1/2.

Proof'. If we let

xIt)= exp(- fo'E'(s)ds)S(t)v(t)

then it is not hard to verify that y(t) satisfies (115) with

a(t) = -1/4E_(t) + qE_-'(t)ll&(t)ll _+ -_2_[D_(t),&(t)]E_-'(t)

Then using Lemma 1, we have

le(t)l < (1/4 + 2q)EZq(t) + v_qE'-'/2(t)[-_tllwolle-* + Co]

Therefore, if q > 1/2, le(t)l exponentially decays to zero as long as E(t) does. 12
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6.3.2 The Krylov-Bogoliubov approximation

Since we are interested in the effect of nonlinear damping, we now neglect the

linear damping part, i.e., let _ = 0. In this case, we desire to establish a Krylov-

Bogoliubov type approximation in our infinite dimensional setting. As we know,

Krylov-Bogoliubov approximation technique has been widely used and its accuracy

is often satisfactory. However, it has not been generalized to multi-DOF models.

Krylov-Bogoliubov approximation is an averaging method. In multi-DOF case, aver-

age method does not seem to make sense because more than one natural frequencies

exist. What we are going to do is to make use of the special form of nonlinear

damping - energy type damping.

We first consider TYPE I model,

_(t) + 7Eq(t),_(t) + Ax(t) = 0 (116)

By Theorem 3, we already know that

x(t)=a(t)y(t)

where

a(t) = exp(-7/2 Eq(s)ds)

and y( t ) solves

_(t) + (A + 720(t))y(t) = 0
y(o) = x(o)

il(o) = _(o) + 7/2Eq(O)x(o)

in which 0(-) is uniformly bounded,

(117)

IO(01 _<(1/4 + 2q)E_q(t) < (1/4 + 2q)E2q(0)
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by

Next, we need to find appropriate ao(t) and Vo(t) such that x(t) is approximated

zo(t) = ao(t)yo(t)

First, since a(t) is slowly varying, we make our first approximation

_(t) ,_ a(t)fj(t)

Consequently,

_(0) = b'(O) (118)

Next, we make our second approximation by letting y(t) _. yo(t), where yo(t) is

obtained by dropping "y_O(t) in (117) and replacing the second initial condition in

(117) by (118). That is, y0 satisfies

_o(t) + Ayo(t) = 0
vo(O)= zo(0)

vo(0) _(0)

Based upon the above two approximations we made, we obtain

(119)

E(0 = a2(t)12([Ayo(t),yo(t)] + Ilvo(t)ll2)

= a2(t)IIYo_t)ll_

= a2(t)E(O)

where

Then, by definition,

Y°(t)=(y°(t) )bo(t)

a(t) = exp(-T/2E'(0) fota2'(s)ds) (120)
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We naturally let the solution of the above integral equation be a0(t).

Therefore, differentiating (120), we realize that ao(t) solves the following initial

value problem

{ ao(t)= -_E,(0)ao_'+'(t)
ao(0) 1

One can easily find the solution as

1

ao(t) = (1 + 7qEq(O)t) -_

(121)

by

Therefore, the Krylov-Bogoliubov type approximation of TYPE I model is given

Xo(t) = (1 + 7qEq(O)t)-_,,yo(1.)

From this Krylov-Bogoliubov approximation, we can see, without linear damp-

ing, the free response of TYPE I model still goes to zero, and the decay is in the

order of 1.-_. Furthermore, larger value of q implies slower decay.

For TYPE g model, similar result can be obtained.

In fact, through the same procedure as above, we can see that the Y0(1.) we choose

should also satisfy (119) in this case, while the integral equation for ao(1.) is slightly

different.

Under the same approximations, we have

E_(t) = E(1.)- -£5_2(1.,L)
2b

1 2t .
= ,,_o(O[E(O)- _6o( ,L)]

where

uo(t,s) )yo(t)= uo(t,L)
0<s<L
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Then, the integral equation for ao(t) is given by

ao(t) = exp(-7/2 E_(tt)dt/)

= expt-_/2fo'eO'(_,)(_(O)-_o_(t,,L))'et,J

from which, one can easily find,

ao(t)= [1+ Tqfot(E(O)- 1 .2_-g"o(t,, L))qdt,]-_

Thus, the Krylov-Bogoliubov approximation for TYPE _ model is obtained.

Notice that since i_o(t.L) is periodic in t and

1 .2 1 .2
E(O) - _-gUo(t,L) - 1/211Yo(t)ll_- _Uo(t,L)

1 L

= 1/2[Ayo(t),yo(t)] + _a 2 fo 16°(t's)12ds

> 0

we can realize that as t ----* ¢x_,

fo'tE(0/-_0(t,, L/l'et,=o(0

Therefore, the Krylov-Bogoliubov approximation indicates that the free response of

TYPE 17 model also goes to zero at the rate of O(t-_) as t -----, ¢x_.

In the above, we have used the simple fact that if f(t) > 0 and is periodic with

period T, then

1 T}/o'f(">'"=:/of(">'"

6.3.3 The Error Estimate

Next, the natural question we ask is what the error of the Krylov-Bogoliubov ap-

proximation is. For simplicity, we only study the error in TYPE I model.
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Beforethe estimation of the error, we first introduce a correcttion term Yo in the

initial condition of (119) so that y0(t) now satisfies

#o(*)+ Avo(t) = 0
yo(0) = x(0) (122)

to(0) + #o

The purpose of introducing the correction term yo in the initial condition will be

explained later.

Now our result is

Theorem 12 For TYPE I model, the error of the Krvlov-Bogoliubov approximation

is given by

IIx(0- Xo(0ll --a(t)llA-a/_(7/2Eq(O)x(O) - Yo)ll + 72B0(t,7) (123)

where

lim B0(t,7) < "/_''E2q+l/2(0)[1/4 + 2q + ql2]t
"r--. o -- _J.)l _'01

The error contains two parts, one part is of the form C72t. Therefore if t _< 1/7,

then this part of the error is still of the order of 0(7). The other part of the error,

a(t)llA-_/2(7/2Eq(O)x(O)- Y0)ll, is decaying with time because a(t) is. In addition,

by choosing

_o = 7/2E'(O)z(O) + 0(72)

we can keep the first part of the error in the order of 0(72), hence the total error is

of the form 0(72) x (_ + 1).

To further understand the reason of introducing the correction term g0, recall

that the first approximation we made in the derivation of the Krylov-Bogoliubov

approximation is

&(t) = a(t)f/(t)
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sincea(t) is slowly varying. Based upon this approximation, the initial condition

y(O) = :_(0) + _/2Eq(O)z(O)

is replaced by

y0(O) = _(0)

This change of intial condition, on one hand, made the following derivation possible,

on the other hand, introduces an error (in the order of 0(3')).

Through error estimate, we reafize that this error can be minimized by choosing

_o = 7/2Eq(O)x(O)

Therefore, the correction term _fi0plays the role of compensating for the error intro-

duced by the "slow varying" approximation.

PROOF: First we estimate []y(t) - y0(t)[[. We know that

£y(t) = C(t)x(O)+ S(t)(_(O)+7/2E'(O)x(O))-7 2 O(r)S(r)y(r)dr

vo(t) = c(t)z(O)+ s(t)(_:(0)+_o)

where C(t) : H _ H and S(t) : H ---* T_(A '/_) are cosine and sine operators

defined by, Vx E H,

c(o= = _ cos,..,.t[=,¢.]¢,,
'ttl_ 1

S(tlx = __, sinw"t[z,¢,,]¢,,
n= 1 _a'_n

Obviously, we have

IIS(t)xll _<IIA-X/Z=ll for x e H
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Then,

Ily(t)- _o(011

]o'< IJS(t)(_/2Ev(O)x(O)- 9o)[J + _2(1/4 + 2q)E_q(0) IJS(r)y(T)Jjdw

< JlA-m(.y/2E_(O)z(O)- 9o)11+ "r=(1/4+ 2q)E2q(O) [t IIA-1/2y(r) lld_(124)
JO

Secondly, we estimate la(t) - ao(t)l. For this purpose, we consider

Y(t)=u(t)(x(°) )_(o)

where

+u(t)
0

7/2Eq(O)z(O)
) -7:_o'u(t- _)°(_) ( ° ) a_y(_)

Y(t)=(y(t)) and /,/(t)= (C(t) S(t))
fl(t) -AS(t) C(t)

is a unitary operator from 'HE to 7"rE.

From the above equation, we can easily know that

IIY(t)ll_: = 2E(0) + _,Eq(0)[x(0), &(0)] + O(,y 2) (125)

In addition, from

we know that

_(t) = -'r/2Eq(t)a(t)y(t) + a(t)f/(t)

= a_(t)lly(t)--r/2Eq(t)y(t)ll 2

= a_(t){ll_(t)ll_ - "rEq(t)[y(t),9(t)]+ "r2/4E_(t)lly(t)ll 2} (126)

Then, by (125) and (126), we can rewrite the energy corresponding to TYPE I

model (116) as

E(t) = 1/2{[Az(t),z(t)] + II&(t)ll2}
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where

= 1/2a2(t){[Ay(t),y(t)] + [[_(t)[]2 -3"Eq(t)[y(t),fl(t)]-I- 3"2/4E2q(t)[[y(t)[[2}

= a2(t){1/2[[Y(t)[[_ - 3"/2E2(t)[y(t),il(t)] + 0(3'2)}

= a_(t)[E(O)+ 3":(t) + 0(3'2)]

f(t) = 1/2{Eq(O)[z(O),:c(O)]- Eq(t)[y(t),fl(t)]}

Then, a(t) can be rewritten as

a(t) = exp(-3"/2 fotEq(r)dr)

= exp{-3'/2 fota2q(r)[E(O) + 3'f(r) + O(3'2)]qdr}

from which, a(t) can be easily solved to be

Z'_(t) = [1+ 3'q [E(O)+ 3':(,1 + O(3")l'd,']-_'

= [1 + 7qE'(O)t + 7_q2Eq-l(O) foty(r)dr + 0(3'3)]-'_,

Therefore, we obtain

la(t) - a0(t)l < 3"=q/2Eq-'(o)[ f(r)dr + 0(3')]

Finally, using (124) and (127), we obtain the error estimate as

II=(t) - =o(t)ll _< a(t)lly(t) - yo(t)ll+ la(t) - ao(t)l Ityo(t)ll

< a(t)llA-a/=(3"/2Eq(O)z(O)-_o)11

+3'=(1/4 + 2q)a(t)E=q(O) fo' IIA-1/=Y(r)lld_

+3"=q/2E_-'(o)[fj If(_')ld_"+ 0(3')] IlYo(t)ll

= a(t)llA-_/=(3"/2Eq(O)x(O)- #o)11+ 7=Bo(t,3,)

(127)
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where

Bo(t,e) (1/4 + 2q)a(t)E2q(O)_otIlA-a/_Y(r)lldr

+q/2Eq-l(O)[_ot If(r)ldr + O('t)]llYo(t)ll

By noticing that for "y -----+ 0,

If(t)l 1/2E_(0)(llx(0)ll II&(0)ll+ Ilyo(t)ll II0o(t)ll)

< E_(0)
- 2,,,i(IIAI/_x(0)IIII_(0)II+llAmyo(t)llll_o(t)ll)

< E_(0) IIAmz(0)ll2+ I1_(0)112+ IIAa/_yo(t)ll2+ II_o(t)ll2
- 2_1 ( 2 2

<_ 1Eq+l(O)
t_,:1

we can obtain by easy calculation that

lim Bo(t,'t) < -_[q/2 +
"y-*0 B

1/4 + 2qlE2q+l/2(O) t
{M1

!"7

6.4 Frequency response- single frequency exci-

tation case

We consider the following infinite dimensional nonlinear damping model

_(t) + 2_All2&(t) + 7([Ax(t),z(t)] + II&(t)ll=)_:(t)+ Ax(t) = E(t) (128)

For the reason of simplicity, we consider strictly proportional linear damping and

total energy (TYPE I) nonlinear damping so that we can easily obtain its modal

decomposition.
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We are interestedin the stationary amplitude response of each mode to a single

sinusoidal input to the system. To specify the excitation input E(t), let B : _1

H be a linear bounded operator. Then we let the excitation be of the form

E(t) = eB cos wt

where e > 0 is a small parameter in the order of _ and 7. That is, we let

= _0e; _f = _'oe

We order the input amplitude as O(e) for the following reasons:

1. For a weakly damped system, a small amplitude (O(e)) excitation at the nat-

ural frequency produces a relatively large (O(1)) amplitude response.

2. In the actural system, large oscillation are limited by damping. Thus to obtain

a uniformly valid approximate solution of this problem, we need to order

the external excitation amplitude such that, in the perturbation procedure,

excitation term appears in the same equation as damping terms.

Therefore, we are considering the stationary response of

_(t) + e[2_oA'/25:(t) + %Eq(t)_,(t)] + Ax(t) = eB coswt (129)

The method we will use for the following analysis is multiple scale method. Define

To=t; 7'1 =et

and the notations

Of,
Do f ( To, T_ ) = -_o "

Of

Dlf (To, T1) -
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then

Let the solution of (129) be

z(t) = xo(To, T1) + ezI(To, T1) +...

_,(t) = Doxo + e(D, xo + Dox]) + O(e 2) (130)

_(t) = D_xo + e(2DoD, zo + D_xl) 4- O(e 2) (131)

Then substituting (130)-(131) into (129) and equating those terms withe same order,

we obtain

D_xo(To, T1) + Azo(To, T_) = 0

D_)xl(To, T1) 4- AxI(To, T])

= -2DoDlxo - 2_oA_/2Dozo- _o([Axo, Xo] + IlDozoll2)qDoxo + B coswt

Obviously, xo(To, T:) and x1(To, T]) can be written in the form

cx)

xo(To, = a (To,
vnml

oo

Xl(To, T1) = __, bm(To, T1)¢,,,

Then, {an(To, T_); n = 1,2,--.} and {b,(To, TI); n = 1,2, • .-} satisfy

D_an(To, Tl ) + w_a,_(To, Tl) = 0

D bn(To,Tl) + Tl)
oo

= -2DoDla. - 2_ow,,Doan - "/o[_-'_ 2w,_a,_ + (Doa,,,)_]qDoa,_ + B*¢,, coswt
liB----1

n= 1,2,...

Obviously, for n = 1,2,...,

an(To, T1) = A,,(T])e 'w'T° + A,,(T])e -i_"T°
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from which, we know

co

__, w,,2 a,_2(To, Ta) + [Doa=(To, Ta)] 2
m=l

oo

- o  12Am(T )[ 2
m----1

Then the equations for b,(To, T1)'s become

(132)

D_b.(To, T1) + w_ b,,(To, T_ )
oo

= e'_"T°[-2iw,,A.t(Ta) - 2i_ow_A,,(T]) - "to( Y_ oa_12A=12)qiw.A.(Ta)l
m----1

+B'¢,/2e 'wt + cc (133)

where cc stands for complex conjugate of the preceding terms.

Next, we assume that the excitation frequency w is close to a particular natural

frequency, say w_, i.e., without loss of generality,

t_ = id I + _0"

where a is a detuning parameter, quantitatively describing the nearness of w to w].

Then bl(T0, T1) satisfies

D_bl(To, T_) + w_b_(To, Ta)

oo

= e"_'T°[-2iwaAff(Ta) - 2i_ow_A_(T_) -'to(_ w2=[2A=[2)qAI(T]) (134)
in----1

+B'V,/2e _°T1] + cc (135)

If the coefficient of e i'_IT° is not zero, then the right hand side of (134) is

of the form f(T1)coswlTo, which would produce terms like T_ocoswlTo and/or

T_0 sinwlT0. Such terms are called secular terms, which are obviously unbounded.

Since a positively damped system cannot have unbounded response corresponding to

a bounded input, secular terms should not appear. Therefore, in order to eliminate
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secular terms, we need to choose AI(T1) such that the coefficient of e_lT° vanishes,

i.e._

oo

-2i,,,, Aa,(T_ ) - 2i_ow_A_ (Ta) - "to(Y_ ,o_12A_l_) qiw, A, (Ta)
Iqt = |

+B*¢l/2e i'T1 = 0 (136)

For the same reason, for n >_ 2, A,(TI) should satisfy, noticing w = w, + ea is

away from w,,

- 2iw.A,,t(T_)- 2i_ow_A,,(Ta)- %( Y_ w_12A,,,12)qiw,,A,,(T])= 0
'm-----.l

and hence, for n > 2, b,(To, Tl) satisfy

D2ob,(To, T]) + w_b,,(To, T_) = B°¢, coswt

Next, in order to solve {A,(T]); n = 1,2,..- } from (136) and (137), let

n= 1,2,.-.A.(T1) = lp.(T])e_"(TI),

(137)

(13s)

Then substituting A,(T_) into (136) and (137), collecting the real and the imaginary

parts, one obtain the following systems of differential equations for

{p,(Tl), /3,(7"1); n = 1,2,..-}

dp_(r_)dr, = -_ow, pl(T1) - "7o12(E,,,__-1 w_p_(T1))qP,(T,)

+ B2.q_ sin .h (Ta) (139)

_d_dy_

d._ed_

d_

Pntal] dTl

= - -to/2(E..%,

= ap,(T1) n = 2,3,..-

(14o)
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It is obvious that for eachsolution of (140), it holds

lim p,,.(TI) = 0, n >_ 2

For (139), by setting _ = 0 and _ = 0, we know that at steady state, PldTl dTl

and ")'1 satisfy

0 --" --_O031p I -- "_O/2(O.)lPl)2qp1 "Jr _ COS"/t I

(141)

0 apl + _ cos "h
2Wl

Then, eliminating _/1 from (141), we obtain the equation for the steady state har-

monic amplitude of the first mode

.B*¢1 _2 (142)p_{_2+ [_o_,+ _0/2(_1pl)2']_}= (-_--:-j

This is called frequency response equation. It is easy to see that the frequency

response equation has a unique positive solution Pl for each value of a, denoted by

g(a]wl, B*¢1). The plot of Pl in terms of a is called frequency response curve. From

(142) we can see that pl(a) = g(a[wl,B'¢l) is an even function of a.

In fact, the existence and uniqueness of a positive solution of (142) becomes

trivial if one rewrites (142) in the form

[B'¢l/(2wl)]5 (143)

Next, let us examine the steady state response of the other modes. We already

know that p, = 0 for n > 2 at steady state. But what about the O(e) order term?

Solving b,(To, T1) from (138) gives

b,(To,T_)= C,,(T,)cos(,.,,,,To+ O,.,(TI))+
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Then it is not hard to realize that C,(T1) --_ 0 as T1 _ oo.

Therefore, for w = wl + ca, the nth (n > 2) mode stationary amplitude is of

order O(e), given by

IB'¢.l
p. = c + 0(_2)

I_ -_21

Similarly, we can infer that if the excitation frequency w is away from wl, then

the steady state amplitude of the first mode is given by

IB'¢11
p,(,,,)= _ + o(_2)

I,,,_- ,,,_1

In summary, the frequency response curve of any mode, corresponding to a single

frequency w excitation is given by

g(alw., B*¢.) when w=w.+ea

6.5

e B-Lq-2_k when
I,o_-.,21 I_-w-I = 0(1)

(144)

Frequency response- multi-frequency exci-

tation case

Next, we consider the case in which the external excitation E(t) contains M distinct

frequencies, and each of them is close to a natural frequency. Say, they axe w. +

ca., n = 1,2,-.. M. Then the excitation takes the form

M

E(t) = e _., J'.Bcos(w.t + ea.t + v.)
n,_-I

where f. and r. are certain constants.

Through similar procedures and with the same notations as in the single fre-

quency excitation case, we can obtain

Dgb.(To,T_) + _.b.(To, T, )
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= e'w"T°[-Zi_.A.'(T,) - 2i_o_._A.(T1)- _o(_ _I2A_I')'i_.A.]
m=l

M

+B'Cn/2 _ fie i'°'T°+i°'T'+% n = 1, 2,...
j=l

In order to eliminate secular terms, A.(TI) should satisfy

oo

-2iw.A.,(Ta ) - 2i_ow_ A.(T] ) - "to( _ w_12A,,,12)qiw.A.
rn= l

+ B'¢./2 f,,e i('"rl +'') = 0

for n = 1,2,...,M

oo

-2iw,_A,J(T1) - 2i_ow_A,,(T]) - "to( _. w_12A,,,12)qiw.A,,(T1) = 0
rn= l

for n= M + I,M + 2,...

Similarly, by letting

A.(Ta) = p.(T1)/2e '_'(T_) n = 1,2,-..

we can know that

lim p.(Ta)=0 forn_>M+l
T] ---*_

and for l<n<M,

dp.(T_)
dT1

eo_.p.(T,) - _o/2(_ ,,_p_(T_))'p.(T,)
rn=l

+ B'¢n/(2w,)A sin 't, (T_)

- a.p.(T_) + B'¢./(Zw.)f. cos%(T1)

where 't.(T]) = a.Tx + r. - fl_(T_).

Again, after reaching stationarity, p., 1 _< n < M satisfy

M

{[_ow. + 'to/2CY_'_ 2 2 _ 2 2.2 2 f.B'¢.)2
j= _jpj) ] +a._ p. = (" 2w.

(145)
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Therefore, in the case of multi-frequency excitation, the stationary harmonic

response amplitudes p,, 1 < n < M satisfy the above coupled nonlinear equation.

In order to study the solutions of (145), we introduce the notation

M

G s 2q=
j=l

Then, from (145), we obviously have

s s= (f-B'¢,,/2) 2
wnP'_ (_oW,_ + G) s + a_ n = 1,2,..-,M (146)

On both sides of (146). summing up from 1 to M, raising to the power q and

multiplying by "y0/2, one obtains

M (f'_B'¢"/2)2 1' (147)

It is easy to see that for each _: = (a_,a_,... ,a2M), (147) has a unique positive

solution denoted by G(ff2). Therefore, for 1 < n _< M, p, satisfies

('f"B'¢"l(2wn))2 (148)
= + [,'o,,.,,,+

p,(cY s) is single valued because of the uniqueness of G(_ s) for each 8 s.

To study the behavior of p,(82), we first notice that by differentiating (147) with

respect to a], we realize that

OG(
< 0 j = 1,2,...,M

2 increases with the other a,'s fixed.i.e., G(8 s) is decreasing as aj

Next, we restrict our attention to the case M = 2, the interation of the first two

modes. As a_ increases, G(a_,as) decreases, and hence p_(a_,as) increases. As a_

increases, pz(a_, as) increases because G(a_, a2) decreases. Then it must be the case

that pl(a_, a_) decreases, since G(a_, as) decreases. Therefore the plot of p_(a_, as)
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is a saddle surface. For fixed a2, the curve pl(',a2) is still bell shaped, reaching

maximum at al -- 0. As a_ decreases, the energy possessed by the second mode

becomes bigger which results in bigger damping in the nonlinear energy type damp-

ing, therefore due to coupling the first mode amplitude becomes smaller. Similarly,

p2(aa, a2) is also a saddle surface.

Numerical Results

For any fixed n, 1 < n < M, in order to find the frequency response p,,(¢72)

from (148), one has to resort to numerical methods to find G(_ 2) first for each g2.

Here, we pointed out that if we use fixed point iteration starting from 0, then we

have monotone convergence, hence avoiding the common phenomenon in solving

nonlinear algebraic equation that the convergence depends on the choice of initial

data.

Specifically, we define

M (f.B.¢n/2)2 ,
F(_2;x) "yo/2[_

a_ + (_o,_, + x) _1
nr-1

and

r0(#_) = r(#_;0)r.(#_) = r(#2;r._,(#_)), . = 1,2,-..

It can be shown that F2,(g 2) is monotone decreasing as n increases, and

r2,+, (_2) is monotone increasing as n increases. In addition, it holds

r2,+,(_2) < G(_2) < r_,(_2), n = o, 1,2,... (149)

In fact, first it is obvious that

r,(_ =)< a(#_)< ro(#_)
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Then, we can easily show that

G(_ _) < r_(_ _) -- r(_;r,(_)) _< r(_;o)= ro(_ _)

a(_ _) > r_(_ _) = r(_; r_(_)) _> r(_;ro(_))= r,(_ _)

Then, by assuming

a(__) _<r_.(__)_<r_.__(__)

a(_ _) _> r_.+,(_ 2) >__r2._,(_ _)

we obtain

< r2.+2(_2) r(_; -2_ = r_.+,(_)) < r(_; r_._,(_))= r_.(__)

> r_.+_(_;r_.+_(_))> r(_;r_(_))= r_.+,(__)

Therefore, by induction, we have shown that {r_,(_2)} ({r,.+,(_2)}) is mono-

tone decreasing (increasing), and (149) holds.

A few numerical examples are made, in which we have chosen M = 3, q =

3/2, % = 2, f,_B'¢,, = 2, for n = 1,2,3. From the computer tests we realize that

when _0 is not small, the convergence is quite satisfactory, while the convergence is

very slow for small _0. Therefore, in choosing e, we should let e = _/k where k > 2

to guarantee fast convergence.

"\
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_o= 2

al --0

0"3:0

_=2

0"1=1

a2= i

a3-1

_=I

_rl --- I

a_=2

0"3=3

_0-----0

ai=3

0r2=2

a3= 1

Solution 0.333 0.236 0.448 0.848

F0 0.662 0.323 0.811 1.588

F1 0.195 0.211 0.278 0.379

F2 0.433 0.244 0.563 1.356

F3 0.280 0.234 0.384 0.483

F4 0.368 0.237 0.488 1.241

F5 0.314 0.236 0.424 0.547

F6 0.346 0.236 0.462 1.169

F7 0.326 0.236 0.439 0.592

F8 0.338 0.236 0.453 1.118

F9 0.331 0.236 0.445 0.627

By ploting pl(o'_,a_), we verified that it is indeed a saddle surface. However,

the increase in a2 direction for fixed al is very small, which is also clear from the

Pl (a_, a 2) in al direction is much morecorresponding contour plot. The decrease of 2 2

significant than that in a2 direction. This indicates that even though there exists

coupling due to nonlinear damping, the coupling effect is rather weak.

92





Chapter 7

Active Damping of Flexible

Structures via Saturating

Acturators

7.1 Introduction

In the previous chapters we have studied nonlinear passive damping problem. In

applications, active dampers are often used to enhance the stability of a flexible

structures. Moreover, due to actuator saturations, active damping become non-

linear. Therefore, it is also important to study nonlinear active damping, as well

as passive damping. In this chapter, we study the active damping aspect of the

SCOLE problem [4] - a recent NASA project. The primary objective of the SCOLE

(Spacecraft Control Laboratory Experiment) problem includes the task of directing

the line-of-sight of the shuttle/antenna configuration towards a fixed target (Figure

1). Due to the facts of very small passive damping in the supporting truss structure
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and the micro-g environment in the orbit, structure vibration is inevitable after each

slewing maneuver. In order to maintain the prescribed pointing accuracry of the

antenna line-of-sight, active dampers are required to enhance the structure stabil-

ity. Only active damping problem will be studied and colocated sensor/actuator

arrangement will be used. The controls are force and moments actuators and the

sensors are rate gyros.

A distributed parameter model is used in this investigation. In Section 2, the

continuum mode] and problem formulation are presented.

In Section 3, a group of rather weak suffcient conditions for strong stabilizability

is presented. Although other sufficient conditions for strong stabilizability has been

obtained in [7], the present conditions are much weaker in the sense that internal

damping is no longer required to be positive definite, and, in fact, can even be zero

while strong stabilizability can still be achieved by active damping.

In order to understand the nature of active damping, in particular, the nature of

saturation type active damping, the mode excitation problem is studied in Section

4. In this study, some notions in classical feedback control such as Characteristic

Equation and Root Locus are extended to our distributed parameter system, which

is a feature of this work. As we will see, the root locus can provide an insight of

the nature of active damping. The root locus method has been a powerful and

useful approach for the analysis and design of finite dimensional control systems.

However, the notions of Characteristic equation and its Root locus have not been

extended to the study of distributed parameter systems, due to the difficulty caused

by its infinite dimensional nature. In this work, we have taken the advantage of the

fact that, although the system is infinite dimensional, the number of actuators and

sensors used is always finite (here, we have excluded those applications in which
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distributed actuators and/or distributed sensors are used).

While much work has been done in the active damping of distributed parameter

oscillation systems by using linear feedback control [18],[39],[53], from practical point

of view, actuators can be linear only in certain range (small amplitude) and become

saturated for large amplitude. Therefore, we need to take the nonlinear (saturating)

nature of the actuators into consideration in control design. Generally, actuator

saturation brings many difficulties. Nowadays, such systems are still designed by

intuition, experience, and simulation using trial and error. Their effects on the loop

response are still poorly undrstood from a theoretical point of view. In Section 4,

the effect of actuator saturation is studied and compared with linear damping case.

In Section 5, the notions of Characteristic Equation and its Root Locus are ex-

tended to general multi-actuators/sensors case. The generalization is based upon

an operator inverse identity.

Since sensor noise is inevitable for most sensors, in Section 6, we consider sensor

noise problem in a_tive damping through direct connection. By studying the effect

of sensor noise on the steady state antenna motion, a design guideline is provided

for the choice of the feedback gain constant in active damping.

Section 7 summarizes the conclusions of this work.

7.2 A Simple Continuum Model

The model we will consider is based upon a simplified version of the SCOLE problem

- a flexible truss, clamped at one end, with an offset antenna at the other end, has

only bending motion in a plane. The truss structure is modelled by an equivalent

uniform Bernoulli beam of length L along z-axis, extending from r = 0, the clamped
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end, to r = L, the antenna end. The antenna is considered as an attached tip mass

with mass m. With r, 0 __ r __ L, denoting the spatial variable along the z-axis

and t denoting time, let u(t, r) denote the displacement of the truss in y - z plane.

For simplicity, we suppose we use only one control force actuator which is located

at the antenna end. Then the beam deflection u(t, r) Moves the following boundary

coupled linear partial differential equations:

a(t,,) + EIu"(t,,) = o
p

fi(t,L) - EIu'(t,L) + z(t) = 0

=(t,o)= o (15o)

,_'(t,o)= o

="(t,L) = 0

where super-dots represent derivatives with respect to time t, and the primes deriva-

tives with respect to r. Here we use z(t) to denote control force and E, I, p are

Young's modulus, moment of inertia and density of the beam material, respectively.

In order to study this problem systematically and rigorously, we need to refor-

mulate this problem in a Hilbert space setting.

First we introduce a Hilbert space

and the inner product on H,

where

H = L2[O, L] ® _1

lf0n
1

,,l(,')u_(,')d," + -gClC_

EH, j=1,2
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and

a 2 = EI/p, b2 = EI/m

For a general element x E H, its scalar component does not have to have any relation

with the L2[0, L]-function component.

And, we define the stiffness operator A by

-b2u"( L )

for

Vx =

with

T_(A)={x= (u(') )EHIu"(')EL_[O'L]'u(°)=u'(O)=u"(L)=°}u(L)

Next, we define the control operator B as

B: H:l1_ H, Bz = (0 I, z E IR 1

\ /Z

i.e., the control is applied only to the beam tip. Obviously, A/'(B) = {0).

Under the above notations, (150) can be written as

Yc(t) + Bz(t) + Ax(t) = 0 (15 )

It can be shown that A is self-adjoint, positive definite on T)(A) and A -1 exists

and is compact. Then by the spectral theorem of positive self-adjoint operators with

compact resolvent, there is a sequence of eigenvalues of A (natural frequencies)

<...
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associatedwith the corresponding eigenvectors {¢., n = 1, 2,.--} such that

A_bn -- 2w,,¢,,, n - 1, 2,. • • (152)

and, furthermore, {¢,, n = 1,2,...} form an orthonormal basis in H.

The eigenvalue problem (152) can be solved to give

in which

¢.(L)

w, = a(-_2) 2, n = 1,2,...

¢.(r) = l[cosh J6. 8. -_r sin-_r)]-_-r - cos -_-r - -y.(sinh -

and {_., n = 1,2,...} are the solutions of

1 + cos 8. cosh _. -t- rn_" (cos _. sinh 8. - sin _. cosh _.) - 0
p_

In fact, we also have

ID. - (n - 2 + 1/4)rl --. 0, as n _ oo

In the above, the constants c_, -/, are defined by

P (__L _2X-2ll/2
a[L+ rn"8.' -"'

cosh 8. + cos 8.

sinh 8. + sin 8.

1 + cos 8. cosh//.

sinh 8. + sin 8-

Later on, we will need the following realtions which are not difficult to verify,

2pLX. 1
¢.(L) = --

rnc_ 8.
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¢_(L)
b 2

= 0(_) as. --,oo

p/m_
= (_)211L+,lrn _

= 0(_) _n----.oo

Sometimes, we need to write (151) in the form of first order system

,t-7 _(t) -A 0 _(t) + -B z(t)

The underlying Hilbert space is

"HE = 7)(A 1/2) ® H

equipped with the inner product

[Wa,W2]E = [A'/2zx,A'/2x2] + [Y,,Y2], w./=

For later convenience, we define the operators

A=( 0 I-A 0

and

7.3

, with _D(A) = _D(A) ® H

E "HE, j=1,2

0 ) IR 1
B = : _ "HE

-B

Strong Stabilizability Conditions

(153)

(154)

In this section, we present a group of sufficient conditions for the strong stabilizabil-

ity of general distributed parameter oscillation systems, not only for the particular
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model presented in the last section. We concentrate on the following abstract wave

equation version of an infinite dimensional linear oscillation system

_(t) + D_(t) + Ax(t) = Bz(t) z E 1I:l"_ (155)

on a Hilber space H. Last section can be considered as a simple example of reducing

a concrete PDE model to the above abstract wave equation model.

In (155), A is a stiffness operator with domain T_(A), and is generally nonnega-

tive definite with compact resolvent. There exist a sequence of natural frequencies

{w,, n = 1,2,...} and the corresponding linear natural modes {¢,, n = 1,2,...}

such that

1. A¢, = n = 1,2,...;

2. wl _< w2 _< " ", and lin__oo w, = oo;

3. {¢,, n = 1,2,-..} form an orthonormal basis on H.

From now on, we assume wl > 0, i.e., there is no rigid body mode.

D is the linear internal damping operator, which is nonnegative definite on its

domain T_(D). B : //_ --_ H is a finite dimensional linear operator.

The energy of the system is defined by

E(t) = 1/2[[[A'/2x(t)l[ 2 + [[_(t)[[ 2]

The question we want to answer is: taking the actuator saturation into consid-

eration, what kind of feedback stabilizing control we should use, in order to make

the closed-loop system strongly stable. By strong stability, we mean, for any given

initial data, (x(0), _(0)), the corresponding closed-loop system response satisfy

lim E(t) = 0
t--*oo
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Our main result of this section is the following

Theorem 13 Under the following assumptions:

I. f(.) is Lipschitz continuous;

e. [f(_),_]_ > o, x # o;

3. N( (D + BB')I_. )= {0} '

the following rate feedback with colocated sensors/actuators

zCt) = -f(B'_(t))

strongly stabilizes (155}, i.e., the closed.loop system

_(t) + D_(t) + BI(B'_(t)) + Ax(t) = 0 (156)

is strongly stable.

Here E,_ denotes the subspace spanned by those natural modes ¢,_ corresponding

to the natural frequency o_,_.

In particular, if all w,_ 's are distinct, then Assumption $ can be replaced by

Assumption3': [D¢_,¢n]+IIB¢.II2>0 n= 1,2,-.-

Before the proof, we make the following remarks:

1. In this theorem, we do not require the passive (internal) damping D to be

positive definite. In fact, even we neglect the internal damping (D = 0) in the

modeling, (156) is still strongly stable as long as

IIn'¢.ll > 0, n = 1,2,...

and Assumptions 1, _ are satisfied.

I.N'(P) stands for the null space of the operator P, and (D+ BB* )IE, stands for the r_striction
of the operator D + BB ° on the subspaee/in.
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2. Assumption 3 is also a necessary condition. Since if ¢ E A/'( (D + BB')IE,. ),

then

De=0; B*¢=0

Then it is easy to see that (156) has the following solution

x(t) = (acos .t + bsin .t)¢

which isobviously not strongly stable.

3. In particular, if we let f(x) =-- x, then we obtain that the necessary and

sufficient condition for the linear system

_(t)+ D_(t) + BB'_(t) + Az(t) = 0

to be strongly stable is Assumption 3 holds (or Assumption 3t holds if all wn's

are distinct)..

. Assumption I not only plays the role of assuring the existence of solution of

(156), but also contributes to the strong stability of (156). In other words, to

guarantee the strong stability of (156), it is important to require f(.) being

continuous at least in the neighborhood of z = 0. In the following example,

which is although of single-DOF, we can see since f(.) is not continuous at

x = O, x(t) does not always go to 0 as t _ co, even Assumptions _, 3 are

satisfied.

EXAMPLE: Consider the governing equation of a spring-mass system with

Coulomb damping

+ = 0

in which H = _1.
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By considering _(t) > 0 and _(t) < 0 separately, we can obtain the solution

Woz(t) + _sgn(:i:(t)) = Wox(O)coswot +:_(O)sinwot

+# sgn(_(t))cos_ot/_o

( 57)

_,( t ) = -Wox( O) sin toot + _(0) cos wot

-# sgn(_(t) ) sinwot/wo

Therefore, in the (wox(t), _(t)) phase plane, the trajectory is governed by the

following circle

[Wox(t) + w_sgn(_(t))]2 + [_(t)] 2 -- [w0x(0) -4- w_0sgn(x(t))] 2 + [5:(0)12

When the representative point (WoX(t), _(t)) is in the upper half plane, the tra-

jectories consist of a series of circular arcs with center (-#/Wo, 0) and radius de-

pending upon the initial data or the state when the representative point enters the

upper half plane from the lower half plane. Similarly, when the representative point

(WoZ(t),J:(t)) is in the lower half plane, its trajectories consist of a series of circular

arcs with center (#/Wo, 0), see Figure _.

If the initial data satisfies [w0x(0)l > #/Wo, then, starting from the initial point

(wox(O), k(0)), the representative point moves clockwise along various circular arcs

in the upper and lower plane. The process stops when the representative point

intersects the WoX(t) axis between -p/Wo and p/wo. The motion ceases at such a

point because the maximum possible friction force exceeds the force in the spring,

i.e.

Similarly, if the initial data is such that

= o; I (o)1
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Figure 12. Phase plane trajectory of the spring-mass system with Coulomb damping.



then there is no motion because the spring force w02z(0) cannot overcome the friction

force p.

Therefore, from this example we can see, since

f(x) = psgn(x)

which is not continuous at x = 0, the system energy does not generally go to zero

as t --. c¢. After the mass stops moving, its strain energy 1/2_o2Z2(t) is generally

positive.

PROOF OF THEOREM 13: First of all, Assumptions _ and 8 imply f(0) = 0.

In fact, let

(fl(xl,...,x=) )
f(x) =

f=(x_,. . . ,_)

Suppose some fj(O,...,O) _ 0 for some j. Without loss of generality, suppose

fl(0,..-, 0) > 0. By the continuity of f at x = 0, there exist 6 > 0, e > 0 such that

fl(xl,0,...,0) _> fl(0,... ,0) - e > 0, for I_,l<

Then,

f_(-/_/2,0,...,0)(-_/2) < -6/2[f_(0,...,0) - e] < 0

However, from Assumption _ we already know

f_(-_/2,0,...,0)(-6/2) > 0

This contradiction implies fl (0,-.., 0) = 0. Similarly, we can show

Ij(O,...,o) = o, j = 2,...,m

106



Next, for any (z(0),k(0)) E T_(A) ® T_(D), by virtue of Assumption I, the

existence and uniqueness of solution of (156) is immediate.

Since

dE(t) = -[DYc(t),k(t)]- [/(B'&(t)),B'k(t)] < 0
dt

E(t) is monotone decreasing and is lower bounded (by 0). Therefore, there exists

E(c_) _> 0 such that

lim E(t) = E(_)

It suffices for us to show that E(c_) = 0. For this purpose, let us assume that

E(_) > 0. Then there exists energy-preserving steady state motion, denoted by

(z,(t),_,(t)), with corresponding energy

Eo(t) = 1/2([Axo(t),x°(t)] + [[k°(t)[[ 2) = E(c_)

Then,

dE°(t)
dt

= -[Dk°(t),ko(t)]-[f(B'k°(t)),B*_°(t)]

= 0

which immediately implies

{ Dko(t) = 0
B'k°(t) = 0

by Assumption $ and f(0) = 0. However, (158) indicates that x.(t) solves

_o(t) + Ax°(t) = 0

(158)

or

x.(t)

 o(t)

oo

= _.(a,_eosw.t + b. sinw,_t)¢,_
rt-_l

Oo

= __w,,(b,,cosw,,t-a,,sinw,,t)¢,,
n=l
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Since we do not intend to lose the generality by excluding the repeated w_ case,

we use {¢k, } to denote the eigenvectors corresponding to the repeated natural fre-

quency wk. Then, _o(t) can be rewritten as

co

k=l ki

oo

k=l ki

Then, (158) is equivalent to

oo

wk coswkt(D + BB')(__, bk,¢k,)
k=l ki

oo

- _ wksinwkt(D + BB')(_ ak,¢k,) = 0
k----1 ki

Therefore, it must be the case that

(159)

(D + BB')(Ek, bk,¢k,) = 0
(D + BB')(Ek, ak,¢k,) = 0; k= 1,2,...

(160)

Then, by Assumption 3, we know that

k= 1,2,...

(161)

Therefore, the orthogonality of {¢k, } implies

ak,=0; bk,=0, forallki, andk=l,2,...

i.e., x.(t) - 0 or E(_) = E.(t) - O.

From the proof we can easily see that if Assumption $ is replaced by

rn

Assumption 3a : [De,, ¢,] > 0, n = 1, 2,..-,
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then Assumption $ can be replaced by a weaker version, i.e.

Assumpti_ 2a: [f(x),_]R. > 0 for _ _ _.

Under Assumption 8a, the uncontrolled system

_(t) + Die(t) + Ax(t) = 0

is itself strongly stable. By using active damping u(t) = -f(B'_(t)), we are en-

hancing the system stability.

7.4 Mode Excitation by Active Damping

In this section, we study the following problem: For an undamped linear oscillation

system,

{ _(t) + Az(t) = 0
x(O)= xo _(o)=_o

If x(0), _(0) are linear combinations of finite number of modes, say,

K

XO -- E CZnu l_nh

k=l

K

k=l

then the corresponding solution x(t) always stays on these modes and is of the form

K

x(t) = _ a_.(t)¢.k
k=l
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where a._ (t) satisfies

a..(0) /_,

However, with active damping, the system response no longer stays on the initial

modes. For simplicity of notations, suppose the damped system starts from the first

mode, i.e.,

z(0) = a_(0)¢1, dr(0) = 0

then the active damping will excite other modes. How many more modes are excited?

In what magnitudes? What is the behavior of those excited higher order modes?

These are some of the questions we will answer in the following analysis. The idea

is to solve the feedback control effort z(t) =/(_(t,L)), a finite dimensional time

function, without solving the whole system - a PDE.

First, we write the damped system response in its mode decomposition form

x(t) = _ .,,(t)¢,,
n----1

where the mode responses a,(t), n = 1, 2,-.. solve

a.(t) + _..(t) = -¢.(L)lb_z(t)

.1(0)=.1(0), al(0)=0

..(0) = 0, _.(0) =0,

where z(t)= .f(_(t,L)), the rate feedback control.

n>2

(162)
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P_cal| that (151) can be written as

w(t) = .aw(O + ez(t)

where

The semigroup T(t) generated by .,4 is given by

where C(t) :

by

7"(t) = ( C(t) S(t) )
-AS(t) C(t)

H _ H, S(t) : H _ D(A 1/2) are cosine and sine operators defined

c(t)z = _ costont[z,¢d¢., x • H
n----]

oo tont [y,S(tly = _ sin ¢n1'¢,',, y e H
n=l ton

Therefore the response (z(t), _(t)) is given by

+ ,u 7"(t - r)Sz(r)d,-

from which we obtain, noticing that 4(0) = 0 And x(O) = a,(0)¢1,

z(t) - c(Oz(0) + s(t - ,-)(-m,(,-))d,-

/o' _ sin to,,(t - r) _"/(__(___L)L )= al(O)costoat _ - ¢,,z(r)dr
n=, ton

Then, separating the boundary component in z(t) gives

1 f0t_ sinto.(t- r)¢_(L)z(r)dru(t, L) = aa(O)¢l(L) costolt - _ _,,
n=l

(163)
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Differentiating both sides with respect to t gives

it(t,L) = -al(O)_l(L)wl sin_lt - Kl(t - _')z(v)dT

where

1 Oo

Kl(t) = _ _ _(L) cosw_t
it----1

(164)

From (154) it is obvious that the infinite series is absolutely convergent and the

convergence is uniform in t.

Therefore, from (164) we conclude that the feedback control z(t) is uniquely

determined by the following nonlinear integral equation:

Z'_,(t)= f[-.l(O)_l(i).,_ sin_o_t- K,(t - ,-).(_-)e,-] (165)

If we can solve z(t) from (165), then we can find each mode response a,_(t) from

(162). We first study

(1) Linear Damping Case (f(x) = kx) We introduce the notation

1

G(s,r) = _ s:+_ , _ _
n----1

And, later on, we will often use the capital letters to denote the Laplace transforms

of the functions denoted by the corresponding lower case letters, such as

z(_) = L[_(t)], A.(_) = L[a.(t)]

etc.

By performing Laplace transforms on both sides of (165), one can obtain

-ka_(O)w_¢l(L)

Z(s) = (s_ +w_)(1 + ksG(s,L))
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Furthermore, from (162), one can obtain the mode responses

A,(s) = a, C0)S( 1 + ks/b2E_'=2 _) + k¢_CL)/b 2
(s 2 + w,2)(1 + ksG(s,L))

ka, (O)w 2 ¢, (L )¢,( L ) /b 2 (166)
A,(s) = (s _ +w_)(s _ +w_)(1 + ksa(s,L))

n = 2, 3,-..

From the definition of G(s, L), we can realize that {=l=iw,, n = 1,2,.-.} are not

the poles of A,(s), n = 1,2,-.. due to cancellation. In fact, all A.(s)'s have the

same poles and they are simply the roots of the equation

1 + ksG(s, L) = 0 (167)

(2) Saturating Nonlinear Damping Case. First of all, the saturation func-

tion f(x) can be written as

f(x)=kx-¢(x)

where ¢(x) is the following dead-zone function

0¢(x) = k(x - sgn(x)M/k)

Ixl _ M/k

I_1> M/k

Then from (164), we have

z(t) = f(iL(t,L))

= ki_(t,L)- ¢(6(t,L))

fO t= k[-al(O)Cl(L)wl sinwlt - Ka(t - r)z(r)dr]- ¢(6(t,L))

Then, performing Laplace transform on both sides and letting

¢(s) = z:[¢(,_(t,L))]
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give

Z(_)=
-k.,(0)_lC,(L) - (82+ _;)_(8)

Similarly as in linear damping case, we obtain

a_(0)s( 1 + ks/b_E_=2 _-_k_-_ kC_(L)/b 2= "'*"q," + ¢l(L)/b2¢(s)
(s_ +w_)(1 +ksG(s,L)) + (s2 +w_)(1 +ksG(s,L))

= ka_(O)w_¢_(L)¢"(L)/b2 + ¢"(L)/b_(s) (168)
(s 2 +w_)(s _ + w_)(1 + ksG(s,L)) (s 2 + w_)(1 + ksG(s,L))

n = 2, 3,...

Comparing (168) with (166), we can realize that each mode response A.(s) is

simply the linear damping mode response A.(s) plus a correction term C,,(s), with

C.(s) ¢"(L)/b2(s2 + w_)(1 + ksG(s,L))

Furthermore, all the poles of each correction term are again the roots of (167),

because we can show that @(s) is analytic on the complex plane.

In fact, from Theorem 13, we can see that under saturation type nonlinear damp-

ing, the damped system is strongly stable. Hence,

1/blit(t,L)[ <_ II_(t)ll _<[2E(t)] _/2 _ 0, as t ---,

That is, for fixed linear range slope k, and saturation level M, there exists T =

T(k, M) < oo such that

lit(t,L)[ < M/k, for t _> T

Therefore, qJ(s) can be written as

q,(_)- l:[¢(,i(t,L))]- ¢(,i(t,L))_-°'dt
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Since T isfinite and ¢(ti(t,L)) isbounded and continuous with respect to t,we thus

conclude that _(s) is analytic.

From above analysiswe can see that in both linearand nonlinear damping cases,

allA,(s), n = 1,2,... have the sarne poles, which are simply the roots of (167).

Therefore, we now introduce

Definition 1 (167) is called the Characteristic Equation of the distributed param-

eter system (150).

To study the behavior of the mode responses a,(t), n = 1,2,..., we need to

study the characteristic equation in detail, in particular its root locus.

1. The closed form expression of G(s, L) is given by

b2 .s )312 2 + cosh v_L + cos v/_L (169)

1lOIs,L)=s+ sinhv :L -s-,n

Hence, the characteristic equation (167) is reduced to

b: v/s 2+c°shv/_L+c°sv/_Ls = -k - ---- (170)
V_ a3/2 sinh v_L - sin v/_L

In particular, we have

oo_ ¢_(..._L) = b2G(O,L)= L3/3
n = 1 0"12

The derivation of the closed form of G(s, L) is given in Appendix A.

2. G(s,L) is analytic on C\{+iw,_, n = 1,2,...}. {:i:i_,, n = 1,2,-..} are the

first order poles of G(s, L). All the zeros of sG(s, L) are on the imaginary axis,

except for one at infinity, i.e., they are {0, _, ±iz,, n = 2, 3,-..} where

IZn -- Wn[ -'-* O, ash _ oo
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In fact, the first statement is obvious. To show the second statement, it is

easy to see that 0 and cc are two of the zeros of sG(8, L) from the definition

of G(s, L). The other zeros, from the closed from expression of G(8, L), are

simply the roots of

sinh v/_/aL - sin _/_L -" O (171)

However, the roots of the transcendental equation

sinh z = sinz

are given by {(1 + i)Xk,

roots of

Obviously, we have

k = 0,1,2,...} where {xk,

tan x = tanh x

k = 0,1,2,---} are the

1=:,,- (k + 1/4)_-I -_, 0, as k .-, oo

Hence, from the relation z = y/_/aL, we know that the zeros of (171) are

given by

{2[(1=i-/)xk]2, k:O, 1,2,.-. }

or

{ :t:ia( xk/ L )2,

Therefore, letting z,_ - a(x._2/L) 2,

k=0,1,2,... }

n = 2, 3,-.-, we realize that the zeros of

sG(s,L) are {=i=iz,_, n = 2,3,-.-}, in addition to {0, oo}. Furthermore, from

the definition of G(s, L), it is not difficult to see that

_n-1 < zrL < wn, n-2,3,...
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3. For 0 < k < oo, the characteristic equation (167) has a sequence of roots

{s,,_, n = 1,2,...} such that

n=1,2,...

and

0, - 0, n --, cc

In fact, first of all, the characteristic equation (167) cannot possibly have any

roots on the imaginary axis, because ksG(s, L) will be purely imaginary on

the imaginary axis excluding {-I-i_,, n = 1, 2,...}.

To see the rest of the claim, it is sufficient to plot the root locus of (167).

As usual, the root loci start from the poles of sG(s, L), i.e. {4-iw,, n =

1,2,...} and end at the zeros of sa(s, L), i.e., {0, ¢x_, +iz,, n = 2, 3,...}.

The angles of departures from the poles and the angles of arrivals at the zeros

are all 180 deg with respect to the positive real axis. Therefore, we can realize

that the root loci stay in the left half plane, since it cannot cross the imaginary

axis.

Since one of the zeros of sG(s, L) is at infinity, we know that one branch of the

root loci extends to infinity along an asymptote. The angle of the asymptote

to the positive real axis can be computed to be 180deg. Furtheremore, in

general, the root locus on the real axis always lies in a section of the real axis

to the left of an odd number of poles and zeros (in our case, there is exactly

one zero on the real axis, which is s = 0). Therefore, the root locus occupies

the whole negative real axis.
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Of course,the root locus is symmetric with respect to the real axis, since

1 + ksG(s, L) = 1 + k_G($, L)

The root locus of (167) is shown in Figure 3.

To verify the statements on s., the roots of the characteristic equation, we let

/...--.

w = _/2s/aL. Then (167) can be written as

2kL. sinhw-sinw
(L + _ ) 2 + cosh w + cos w

roots w_ = 2V/_/aLSince the

that

Hence

+(_) 21
w

are unbounded as n --* oo, we can conclude

Jw,+2 - (1 + i)(n + 1/4)_r] --, 0, as n --, oo

s,, = a/2(-_2) 2

• ,_.,_,_./(1 + i))_
= za_TJ t 8.

• ,_./(1 + i))2
= ZO3n( _'n

Therefore, we can show that

_[_.] _ o, la[_.]-,.,.I _ o, as,-,--,

Based upon the above study of the characteristic equation and its root locus, we

can obtain the following conclusions:

(I) In linear damping case, we have found the Laplace transform of each mode

response An(s), n = 1,2,.-., supposing the beam starts from the first mode. Active

damping excites all other modes. The active damping process is as follows: the
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Figure 8. The root locus of the characteristicequation 1 + ksG(s, L) = O, for

O<k<oo.



systemenergyinitially possessed by only the first mode, 1/2._a_(0), is first partially

shifted to all other modes, and then the energy acquired by each mode is gradually

absorbed by the active damper. Quantitatively, the excited mode response a.(t),

n _> 2, is equivalent to the output of a stable system with the following transfer

function

w_¢l(L)/b _

= + + D(1 + ksV( , L))

corresponding to an initial impulse excitation with magnitude kal(O)¢,(L). Each

of the excited mode responses is proportional to the feedback gain k.

The excited mode response in time domain can be found through inverse Laplace

transform. Let F be a closed contour consisting of the imaginary axis and the

semicircle with infinite radius on the left half plane. Then for n > 2,

an(t) = __i ['¢0 A.(s)e,tds
2ri .-ioo

where

1
= _ri _r A,(s)e*'ds

oo

= _ [Res.=,_ {A.(s)e °'} + Res.=_{A.(s)e"}l
k=l

oo

= _ p(k"} exp(_[sk]t)cos(_[sk]t + Op ))
k=l

(172)

p(,O = [Res,=,k{A,(s)}l

0 (") = Arg[Res,=° k{A.(s)}]

k = 1,2,...

From (172) we can see that each mode response a,(t) involves all frequencies,

which are slightly smaller than the corresponding natural frequencies. As frequency

goes higher, the damping effect of the active damper becomes weaker, because

_[sk] --. 0 as k --. oo.
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(E) In saturation type nonlinear damping case, we have shown that A,,(s) is

equivalent to the sum of the A,(s) corresponding to finear damping case and a

correction term. Furthermore, all the correction terms have the same poles as in

linear damping case, i.e., the poles axe the roots of the characteristic equation. In

other words, the A,(s) in both linear and nonlinear damping cases have the same

poles, but with different residues.

In saturation type nonlinear damping case, the mode response can be similarly

obtained (attention needs to be paid on the restriction t >_ T(k, M) to guarantee

the integrand vanishing on the infinite semicircle).

oo

a.(t) = __, _(") exp(_[s,]t)cos(_[sk]t + 0("))
k._ l

with 7"(") '_(") similarly defined as in linear damping case.P'k ' Wk

Therefore, the existence of saturation in active damping only causes variation of

amplitudes and phases, and does not result in any qualitative change in terms of

mode responses. In particular, the component frequencies remain the same and no

extra frequency is introduced. These confirm that saturation type nonlinearity is

amplitude sensitive but frequency insensitive.

(gr) From the root locus (Figure 8), we cam see that when the feedback gain k is

chosen such that sa and s-1 are located to the left of 7Y_, the base frequency oscilla-

tion decays much faster than higher frequency oscillations. Then higher frequency

oscillations soon become dominant in this case.

When k is sufficiently large such that the first pair of roots are on the real

axis but to the left of _b-_, base frequency oscillation is then completely eliminated.

However, it is impossible to eliminate any of the higher order frequency oscillations

with only one actuator. In other words, active damping effect is significant only to
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the base frequency oscillation.

(/V) From (172) we can see that for any n > 2, there does not exist o > 0 such

that

la,,(OI_<const.e-¢'

That is to say, the total energy E(t) of the system does not possess exponential

decay.

However, if we use modal truncation as an approximation, the finite dimensional

truncated system energy does decay exponentially in both linear and saturation non-

linear damping cases. This is a difference between the original infinite dimensional

model and the finite dimensional truncated model.

Let us condiser the saturation type nonlinear damping case. Let the finite mode

approximation of z(t) be
N

n--1

Then {a_(t), n = 1,... ,N} satisfy

h,(t)+d_,(L)/b2zN(t)+_a,,(t)=O, n= 1,2,...,N (173)

where
N

zN(0 = 1(_ a_(0¢n(L))
n=l

By introducing the following notations

:_N(t)

Diagonal {_2, _,,,,, _v }

(_,(t)1
.N(t)

122



BN

¢,(L). )
CN(L)

(173) can be recast into the form

_,N(t) + -_BNf(B_N(L)) + NaN(t)

• N(o)=

=0

(al(0) )
aN(O)

a,(o) )
_N(0)= i

aN(0)

Applying Theorem 13, we can conclude that for any initial data

II_N(OII_ O, ase _

Then, through similarsteps as in obtaining (164) we can obtain

1/,h.(t) = -a.(O)w. sinw.t + h.(O)cosw,d - _ cosw.(t - r)¢.(L)zN(r)dr

n = 1,2,...,N

and, further that

z_(t)
N

= f(_ a.(o¢.(L))
n----|

N

= k[__.(h.(O)cosw,d-a.(O)w, sinw,d)¢,,(L)
n----|

i /ot N N__ _ ¢2.,(L)cos.,,,(t - r)zN('r)d_']- ¢(_ a.(O¢.(L))
n=l n----I

Therefore,

1 N h.(O)s - a.(O)w_

ZN(s) = 1+ksGN(s,L)[k._ffi_ _5_-_2 ¢.(L)--_N(s)]
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A.(,) = a [a.(o)_+ a.(o) - ¢.(L)/b'ZN(,)]
s2 + w_

P.(_) + O.(L) q'N(_)
1-I7___(__+,.q)(1 + k_CN(,,L)) b_ (s_+,.,_)(X+ k_GN(_,L))

where

1 _ ¢_(L)
CN(s,L) = _.=1 _¥_._

N

• ,_,(s) = £[¢(Y']_ h.(t)C.(L))]
n----1

and each P,(s) is a polynomial of s of order 2N - 1, for n = 1,2,... ,N.

Let

o"= minls,,sN{-_[s,,]} > 0

where {s,, s"_, n = 1, 2,-.-, N} are the roots of the following rational characteristic

equation

1 + ksGN(s, L) = 0

Then, through inverse Laplace transform we can see that

for some M. > O. And hence,

N

_ *_.(t))___Koe-_',EN(t) = 1/2 __,(w.a.(t) +

for some Ko > O. Therefore, we can find K > 0 such that

t _ T(k,M)

Ely(t) < Ke -2"t, t > 0

i.e., the energy of the modal truncation model decays exponentially.
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7.5 Sensor Noise Effect

Since in most cases, measurements are corrupted by sensor noise, we consider the

effect of sensor noise in this section. We are particularly interested in the sensor

noise effect on the steady state motion of the offset antenna. For simplicity, we

assume that the sensor noise is a white noise process n(t) with constant spectral

density 1 over the whole frequency range. Then the sensor output is given by

v(t)

If we use direct connection, the feedback control is

z(t)- f(_(t,L)-on(t))

Again, we use the continuum model (150), which, in this case with sensor noise,

can be rewritten as

fi(t,r) + a2u"'(t,r) = O

fi(t, L) - b_u"(t,L) + f(it(t,L)- on(t)) = 0

_(t,0) =0

_'(_,0)=0

_"(t, L) = 0

(174)

where f(x) can be either a linear function, f(x) = kx, or, a saturation function

represented by

f(x) = JU tan-'(kx)

for our convenience.
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Linear Damping Case

In linear damping case, things axe rather trivial because we have the luxury of

transfer function - we can find the transfer function between the beam tip position

u(t, L) and the sensor noise input N(t).

In fact, by setting the initial conditions to be zero, we obtain as before

1 fo' _ sinw.(t- r)¢_(L)z(r)dr_(t,/;) = _ _.
n---_l

where, in this case, z(t) = k[i_(t,L)- N(t)]. Then, through Laplace transform one

can find

U(s,L) kC(s,L)

lv(_) 1 + k_V(_,L)

In particular, if N(t) - an(t), a white noise process, then we have the spectral

density of u(t, L) in stationarity:

o.2k21G(iw,L )l2
¢_(_) =

I1 + kiwe(iw, L)l 2

O-2
= --cx_<w<_

liw + 1/k[G(iw, L)]-al 2

Then from the spectral density, we can further calaulate the stationary variance

of u(t, L) by integration. Figure g is a typical plot of the spectral density ¢_(w),

from which, we can see that if the sensor noise involves only those frequencies,

{z,, n = 1,2,... }, i.e. the zeros of G(iz, L), such that

N(t) = _ c= cos z,_t + dn sin z,,t
11

then the beam tip is motionless at steady state, while the beam itself is vibrating

under the sensor noise excitation.

Instead of going further, we switch our attention to saturation type nonlinear

damping case.
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Figure 4. The spectral density of the stationary beam tip motion.



Saturation Damping Case

In order to cast (174) into Ito form, we first employthe following approximation

f(i_(t,L) -an(t) _ f(fi(t,L))- f'(i_(t,L))an(t) + a2/2f"(i_(t,L))

Mkan(t)
= M tan-l(ki_(t,L)) - 1 + [kfi(t,L)] 2

k (t,L)
-M(ak)'[1 + (ki_(t, Ll)'] 2

so that the antenna motion equation in (174) is approximated by

fi(t, L) + f(i_(t,L)) + a_/2f"(i_(t,L)) - b_u"(t,L)

= f'(i_(t,L))an(t) (175)

Next, in order to simplify the diffusion coefficient, we divide both sides of (175)

by 1/(Mk)f'(i_(t,L)), which is always positive, to obtain

fi(t, L) + MD(ki_(t,L)) + [ki_(t,L)]2[_(t,L) - b2u"(t,L)]

-b2u"(t,L) = Mkan(t) (176)

where

D(x) = (1 + z_) tan -' z - (ak)21 + z2 x e

Before we proceed, we pause on the curve of D(z) versus z. First, D(z) is an

odd function, hence it is sufficient to study D(z) curve for positive z. We can easily

have, when ak < 1,

D'(z) > [1 - (ak) 2] + 2ztan -1 z >_ 0 z > 0

Therefore, D(z) is positive and monotone increasing on (0, _) when ak < 1. When

ak > 1,

D'(O) = 1-(ak) 2 < 0
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That is, there exists Zo > 0 such that D(z) < 0 on (0, z0) and D(z) > 0 on (Zo, _).

The D(z) curves corresponding to a few ak values are plotted in Figure 5.

Next, consider that

[ki_(t,L)]_[fi(t,L)- b2u'(t,L)]

= (kb)2it(t,L)-_i_(t,L)[fi(t,L) -

"4

b2u'(t,L)]

= (kb)2i_(t,L)[_(t),_(t) + az(t)]

Hence, (176) can be rewritten as

fi(t,L) + MD(kB*_(t)) + (kb)2E(t)B*_(t)

-b2u"(t,L) = Mkan(t)

and, from which, (174) is approximated by

_(t) + MBD(kB*_(t)) + (kb)2E(t)BB*_(t)

+Az(t) = MkaBn(t) (177)

In what follows, we are only interested in the steady state behavior of (177).

After the system reaching stationarity, the total energy E(t) fluctuates around a

constant energy level and/_(t) becomes a zero mean stationary stochastic process.

Therefore, we can intuitively see that, after reaching stationarity, among the two

damping terms, the nonlinear damping term MBD(kB'2(t)) becomes dominant

over the other damping term, which has a zero mean random damping coefficient.

Therefore, we neglect the damping term (kb)2E(t)BB*_(t) in (177) so that the

stationary structure response is approximated by the following Ito type stochastic

distributed parameter system:

_(t) + MBD(kB'_(t)) + Ax(t) = MkaBn(t) (178)
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From (178), through similar procedures as in Section 4, we can obtain

i'x(t) - s(t- +

where we have set the initial conditions to be zero since we are only concerned with

the stationary behavior.

By separating the boundary (scalar) component in x(t), we obtain from the

above equation

_0 t
u(t,L) = M K_(t - r)[-D(ki_(r,L)) + kan(r)]dr

where

From (154), we have

OO

K2(t) = 1/b:__, ¢_(L),., sinw,,t
n= 1 wn

1/b 2¢_(L) _ O(n -4)

Therefore, K2(t) is a fast converging series and we can reasonably use first N terms

as an approximation of the infinite sum to obtain

uO:,L) = M for _ ¢_(L) sin_,,(t- r)[-D(kfi(r,L)) + kan(r)ldr
n=|

By defining

y.(t) --j0t M ¢2.(L) sinw.(t- r)[-D(ki_(r,L)) + kan(r)]drb2 wn

n = 2, 3,...

we can realize that the beam tip (antenna) motion (u(t, L), fi(t, L)) satisfies the

131



following system of stochastic differential equations:

[E_=I ¢_(L)]D(kfi(t,L)) + w_u(t,L)_(t,L) + -_ N

N M N
+ E.=, (w_ - w_)y.(t) = _-[E.=, ¢_(L)lkan(t)

M 2
ft,,(t) + _¢,,(L)D(kiL(t,L)) + w_y,,(t)= -_¢_(L)kan(t)

(179)

n = 2,3,.-.,N

We call (179) the N-th order approximation of the beam tip motion. Notice that

in (179), the damping coefficient

1 N

b-_E ¢_(L) ---. 1 asN -_ oo
n----1

because
g

1 oo ) 1 r=L
b-_Z: ¢.(r)¢_(L)=

,,=1 t 00<r<L

In fact, it can be easily seen from

(:)= Z[ ,¢.]¢.
n----1 1

= _ Cn(L)
.=, ¢_(L)

In particular, the first order (N = 1) approximation of the beam tip motion is

given by

fi(t,L) + AD(ki_(t,L)) + w_u(t,L) = )_kan(t) (180)

where A = M/b2¢_(L).
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5).

When ka > 1, the deterministic version of (180) has a stable limit cycle (Figure

Stationary Statistics for Single-DOF Nonlinear Vibration

In the rest of this section, we will find the approximate stationary probability

density and varaince of (180). This is a central topic in nonlinear random vibration

theory. Various methods have been reported by many authors. For surveys, see [25]

[33].

The method we are going to use is called Method of Energy Approximation,

developed by the author [72].

What we propose is to approximate a general nonlinear damping model

_(t) ÷ "_D(z,_) + JoX(t) = #(v(t)

by the following energy type nonlinear damping model

_(t) + _ _ )_(t) + _0_x(t)= _w(t)

where p(E) is chosen in such a way that it minimizes

[_'[D(vf_/wo sin ¢, v/_ cos ¢) - p(S)v/_ cos ¢]2d¢
Jo

(181)

(182)

In the above minimization, E is considered to be fixed, because after reaching sta-

tionarity, the energy fluctuates around a constant level. In other words, at station-

arity, the energy absorbed by the damping mechanism is statistically equivalent to

the energy input due to the external noise.

It turns out that p(E) is given by [72]

4 ['_/2D(v/2"-E/wosin¢, v/'2-E cos ¢) cos ¢d¢ (183)
_(E) = _v_ J0

The following are two facts supporting the above approximation. The first fact

is [72]
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Theorem 14 If D(x, y) is even with respect to z and odd with respect to y, then

both the original model (181) and the corresponding modified model (182) have the

same Krylov-Bogoliubov approximation, given by

da(t)/dt = -7/woL(a(t))
d_(t)/dt = 0

where

lf[L(a) = _ D(asin¢,awocOS¢)CosCd¢

The second fact is concerned with limit cycle.

For the generaa nonlinear damping model (181) without noise input, i.e.,

_(t) + "rD(z,_)+ ._oX(t)= 0

by Krylov-Bogoliubov approximation, we know that a limit cycle exists if and only

if

L(a)= 0

has a positive solution a_. And in this case, the limit cycle has approximate ampli-

tude ap and frequency Wo.

To find the stability of the limit cycle, let us define the deviation Aa(t) from the

limit cycle amplitude, i.e.,

a(t) = ap + Aa(t)

Substituting into a(t) = -7/woL(a(t)), we obtain

dAa(t)
= -71_oL(ap + Aa(t))

dt

-_/.00(_l.=,,)_a(t)
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Then, it becomes obvious that the limit cycle is stable if and only if

dL(a)l.ffi..>O
dt

In summary, for a general nonlinear damping model, the existence, amplitude

mad stability of a limit cycle are determined by

L(a) = 0
_a la=ap > Oor < 0

Since both the original model and the corresponding modified model have the same

L(a) function, we conclude that both of the nonlinear damping models have the

same limit cycles and stability propertity. Of course, this analysis is based upon the

Krylov-Bogoliubov approximation.

For the modified model (182), its stationary probability density function is given

by [72]

p.(x,y)

1/c

, 2 r_
= CexpL-_0 _(z)dz]

L" /02r exp[- 2 p= _o 7 "(_)d_]dp

In order to compute the function/_(E) for our problem (180), we will need the

following three identities

fo 7r k 2 1) (184)"/2tan-l (kcosx)cos_d_ = _(vS+ -

rr k 2 - 1/2 1 - (1 + k2) 3/2[_/2tan-l(kcosx)cosaxdx = _-_[v/i "+ + ] (185)J0 3k2

f0 /2 c°s2x dx - _r 1 1/V/T + k 2) (186)
l+k 2cos2z _i( -

Using (184) - (186), we obtain

p(E) 4 /./2 XD(kv/'2-E cos ¢) cos ¢d¢
-- "JPV_ JO

= 2x[(1+ 2k2Ep/2- 1 _ k/2 (_k)2 (_k)_
3kE 2kS + 2kSx/1 + 2k2E ]
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Next, we need to evaluate foE I_(z)dz. For this purpose, we first calaulate

foE[ (Ok)_2kz + =
2kzvll + 2k2z

]orE[(1+ 2k_)_/_- i k/2]dz

-a2k ln(1 + v/1 + 2k2E) + a2kln2

2(4 + 2k2E)_/1 + 2k2E
9k

2 In(1 + x/1 + 2k2E)
3k

-k/2E + 3-_(21n 2 - 8/3)

Then, we obtain

2 E

(Ak_)_]o .(_)d_
1

Ak3a_ (4 + 2k_E)(8/9"v/1 + 2k2E - 1)

__ 2 ln(1 + _/1 + 2k2E) + constant+ (1+ 3(ka)2 )

Therefore, the stationary probability density is given by

p(x,_) C[1 + _/1 + k_(w[z 2 + y_)]°

x exp{-fl[4 + k2(w_z 2 + y2)][8/9_/1 + k2(w_x _ + y2) _ 11}(187)

where

4 8

= A_+_fl
1

=
Ak(ak) _

and C is the normalizing constant, which is given by

1/C = w-.-_ z(1 + x) _ exp[-8/9fl(x 2 + 3)(x - 9/8)]dx

If we define

(188)

jfl _I,,(a, fl) = x"(1 + x) ° exp[-8/9fl(x 2 + 3)(x - 9/S)]dx
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for n -- 1,2,..., then

wl k 2 r_ 1
O= _-1 (a, fl) (189)

It is not difficult to see that the stationary variance is given by

1 [13(a,B) 1]
Ex 2 = 2w3"_k_/-_,fl)

1 I1(a + 2, fl) - 211(a + 1,fl)

Next, we study how the stationary density p(x, y) is affected by the vMue of the

parameter ak.

For this purpose, we define

Obviously,

_(E) = _/1 + 2k2E

q(_) = C(1 + _)° exp[-8/9fl(_ 2 + 3)(_ - 9/8)]

p(x,y) = q(J1 + k2(w[x _ + y2) )

2°+I
= ¢(1) = -(,,k) -2]

Ak

Since

(190)

(191)

we realize that, when ak _< 1, the stationary density p(x, y) attains maximum at

the origin. For a typical plot of p(x, y), see Figure 6. When ak > 1, the maximum

is not achieved at the origin, but rather, along a parabola with center located at the

origin. A typical plot of p(x, y) in this case is shown in Figure 7. Figure 8 is the

density plot of p(x, y) corresponding to Figure 7, clearly indicating the altitude of

the stationary density.

We can actually find the equation of the parabola on which p(x, y) achieves

maximum in the case ak > 1. Consider the equation

q'(¢(E))=0
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Figure 6. The stationary probability density p(x,y) for a = 1, k = 1, _ = 1,

i.e. ak < 1 case.
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Figure 7. The stationary probability density p(z, y) for a = 1, k = 3, _ - 1,

i.e. _k > 1 case.
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Figure 8. The density plot of p(z,y) with cr = 1, k = 3, and _ = 1.



which is equivalent to

_3 + 1/4(_2 + _) = 3/2(ak)2

The solution of (192) isgiven by

_0(trk) = hC3/2(trk) 2) - _'_2[hC3/2(trk)2)]-I - 1/12

where

17 . 1331

h(z) = {I--_ + z/2 + [2985984

Therefore, the equation of the parabola is

17

+ (1--_ + x/2)211/2P/3

_/1+ k2(_x2 + y_)= _0(_k)

(192)

or

,,,_ + _= _[_o_(_k)-1]

And, it is easy to verify that

_o(_rk) > 1 ¢==_. ¢rk> 1

In Figure 9, the variation of the stationary statistics Ez 2 as a function of k and

A is plotted. It is obvious that the stationary variance increases more significantly

in k direction than in A direction, for fixed observation noise intensity tr > 0.

Among those parameters, tr - the sensor noise intensity, and A - the maximum

output of the actuator, are dependent upon the sensor and actuator used. The

only parameter we can adjust is k in the linear range slope Ak. Through the above

analysis, we know that when k is large (ak > 1), the stationary variance (deviation

from the equilibrium) is large. Therefore, to achieve small deviation from the equi-

librium, a small k is desired. However, at transient, if k is small, the active damper

no longer significantly enhance the stability. Therefore we have two options:
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Figure 9. The plot of the stationary variance Ez 2 versus k and _ with _ - i.



• preset a compromized value for k such that k _ l/a;

• let k vary in the following manner:

relatively large kx at transient or when signal - noise ratio is large;

relatively small k2 after transient or when signal - noise ratio is

small.

7.6 Conclusions

A group of sufficient conditions for strong stabihzabihty is provided for general

distributed parameter oscillation system, taking the actuator saturation into con-

sideration. These are the weakest sufficient conditions obtained so far and it is

found that the nature of internal damping is not crucial in guaranteeing the strong

stabilizability.

By extending the notions of Characteristic Equation and Root Locus to our dis-

tributed parameter system, we studied the nature of active damping. Active damp-

ing excites all other modes even if only one mode is involved initially. Saturation

type nonlinear damping does not generate any qualitative change in terms of mode

response. In particular, each component frequency remains the same and no extra

frequency is introduced. Indeed, the Laplace transform of each mode response in

both linear and nonlinear damping cases have the same poles, which are the roots

of the characteristic equation. Through the root locus, it is also found that using

one active damper can only significantly damp or eliminate the base frequency os-

cillation and higher frequency oscillations become dominant in the response of the

actively damped system.

We studied the effect of sensor noise on the steady state response of the beam
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tip. By calculating the approximate stationary probability density of the beam

tip motion (u(t, L), i_(t, L)), we have found that a large feedback gain (linear range

slope) will result in a relatively large steady state deviation of the beam tip from the

equilibrium due to sensor noise excitation. Therefore, in the design of the feedback

gain, a compromise has to be made between satisfactory transient damping effect

and reasonably small steady state deviation of the beam tip.
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Chapter 8

Conclusions and Some Open

Questions

8.1 Conclusions

Frequency Response of Nonlinear Damping Model: Single DOF Case

A method of computing the correlation function and the spectral density of

nonlinear damping model is obtained. In the case that D(x, y) being of the form

#t 2 )y, the spectral density is given by (40) in which ¢_ is given by (48). In

the case of general D(x, y), the spectral density is given by (32) for which one needs

to evaluate ¢_ and rn2,o. ¢_ can be obtained from (31) or from (48) by first finding

the corresponding #(.) through the formula (45). Based upon (38), the approximate

value of m_,0 is given by

1 re(l)

rn_,0= _°2m(0)

This paper also proposes a method to obtain the approximate explicit stationary
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density for nonlinear damping model with general D(z, y). The idea is to replar.e

D(z, y) in the exact model by the corresponding #(_)y to obtain the modified

model. The approximate explicit stationary density is given by (52) and (53). It is

shown that both the exact model and the modified model have the same Krylov-

Bogoliubov approximation and the same ¢_, ¢_.

In the Spacecraft Control Laboratory Experiment (SCOLE) program, the pri-

mary control task is to rapidly slew or change the line-of-sight of an antenna attached

to the space shuttle orbiter, and to settle or damp the structural vibrations to the

degree required for precise pointing of the antenna. The objective will be to min-

imize the time required to slew and settle, until1 the antenna line-of-sight remains

within the prescribed angle. From practical consideration, the maximum moment

and force generating capability of the controllers on both the shuttle and the an-

tenna beam/reflector are limited (maximum moment on both shuttle and antenna

reflector is 104 ft-lb for each axis, maximum control on the reflector is 800 lb).

Therefore, saturation type of control is inevitable. To avoid significant excitation

of the beam while applying the slew control, the first harmonic of the slew control

versus time should stay away from the resonant frequencies of the first a few modes

of the antenna beam. This consideration is important in the design of the slew

control. This paper provides an analytical frame of finding the spectral density of

each mode, which is basically the amplitude of the system response corresponding

to the sinusoidai input with each frequency w. Specifically, the spectral density tells

the designers where the resonant frequency is.

Theorem 8 gives an interesting result concerning the modelling and identification

of nonlinear internal damping in flexible space structures. In spite of the fundamen-

tal importance of the damping term, the nature of internal damping has been little
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known. In [8], the following nonlinear damping model is proposed

(193)

The free response of (193) fits NASA flight data with great accuracy. However, if

we replace the nonlinear damping term in (193) by p(_)_ where

.(E) = D

_ _o (_2x_+_2)q
2m+o

_d n

sin 0, _ cos 0) cos OdO

in which

we obtain the following energy

By Theorem 3, both (193) and

m + n + (a + 8)/2

2 r(m + _)r(. + 1 + _-_)
7r rCq+2)

type nonlinear damping model

Po , _ 2 w_x 0 (194)

(194) have the same Krylov-Bogoliubov approxima-

tion, that is to say, these two nonlinear damping models can not be distinguished

based upon theirfreeresponses (fordetails,see [72]).

Frequency Response of Nonlinear Damping Model: Multi-DOF Case

A formula for computing the spectral density matrix of nonlinear damping model

with n-DOF is presented, (77). The error of the formula (77) is of the order O(-y2).

It is not surprising that the spectral density matrix depends on the first order

statistics Rz,(0) and Rz_(0) for which we need the (first order) stationary probability

density. However, to find the stationary density in general is itself a difficult task.
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In the case of energy type damping, i.e.

D(x, y) = p(xTKDx + yTMDy )aaTDy
2

the explicit stationary probability density can be obtained and is given by (90) and

(91). In this case, the stationary density function is a function of energy ED with

ED = 1/2(xTKDx + yTMDy)

and R_v(0 ) = 0, R_(0) can be obtained explicitly and is proportional to K -1, see

(95).

As we know, in single-DOF case, z and _ are always uncorrelated in stationary

state. However, this luxiury does not extend to multi-DOF model. It is pointed

out in this paper that even for linear multi-DOF model, x and _ are in general not

uncorrelated. A necessary and sufficient condition for uncorrelatedness is given by

(82).

The conclusions on the infinite dimensional model

1. The shape of the frequency-response curve

Let us consider any fixed mode, say the first mode.

excitation with frequency close to wl, i.e.,

For single frequency

t.O = t,d I + _0"

the frequency-response equation is given by

= 2

The unique positive solution, denoted by g(a[w_, B'¢_), when plotted, is still

bell-shaped. And there is no multi-peak phenomenon because g(.Iwl, B*¢1) is

an even function of a and is monotone decreasing as a 2 increases.
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The frequency-response curve is given by

when w=wz+ea

when I,,.,-_1 = o(1)

or, generally,

[g(a[w,,, B*¢.)

t

when w=wn+ea

when [w --w,, I = 0(1)

However, for nonlinear stiffness (linear damping) problem, the shape of the

frequency-response curve is more complex and qualitatively different. For

example, for the following Duffing oscillator

+ 2e_ + Joz + eaz 3 = E(t)

the corresponding frequency-response equation is given by

p_(_)= k_/(2_0)_

One can easily see that p(a) is no longer an even function of a. In fact, in

certain range of frequency, p(a) is even multi-valued. As long as a :fl 0, the

frequency-response curve is a backbone curve.

In this case, there are jump phenomenon and caotic behavior which will be dis-

cussed later. Of course, if a = 0, the model becomes linear and the frequency-

response curve is single-valued and takes the shape we are familiar with.

2. Comparison with linear dampin_ problem
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It iswell known that for a singleDOF linearoscillator

+ 2e_oW1_ + _z = _B'¢I cos_t

the stationary amplitude is given by its spectral density

When w = wl + ca, i.e.,

w 2 -w_ = 2ea_l + e2a 2

we have, for the linear model,

p_(w) = (B'¢_/(2_)) _
(a + _ 2 e_oa)2e2_,) +(_o_, +

While the corresponding nonlinear counterpart is

(B'¢,/(2_,))_
P_(_) = _2 + 1_o_1+ _o/2(_p_,),]2

As we can see,

_N(O_) <_ _L(O_) for _a_--" Wl + {O"

This is not surprising because inclusion of nonlinear damping makes the to-

tal damping greater. This in turn results in smaller steady state response

amplitude.

When w, the excitation frequency, is away from wl, we have

IB'¢_I
pL(W) "-- el,,,2_,,.,[I + °(e3)

IB'¢,I
PN(_) = _1,,,__,,,[I + °(_)
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i.e., these two frequency-response curves are very close when the excitation

frequency is away from the natural frequency.

From above we can see, comparing with linear model, the frequency-response

curve of nonlinear damping model has no qualitative change and the only

difference is the frequency-response curve of nonlinear damping model is below

the curve corresponding to the linear model, especially in the neighborhood of

the natural frequency of that mode.

3. Jump phenomenon and chaotic behavior

For nonlinear stiffness problem such as the Duffing oscillator, the multival-

uedness of the frequency-response curve due to the nonlinearity of stiffness

has a significance from the physical point of view because it leads to jump

phenomenon. To explain this, we imagine that an experiment is performed in

which the amplitude of the excitation is held fixed, the frequency of the exci-

tation, i.e. _, is slowly varied up and down through the natural frequency w0.

We observe the amplitude of the harmonic response. If a starts from the left

side of the peak and increases, the amplitude will jump from the peak value

to the lower value. Conversely, if er starts from the right side of the peak and

decreases, the response amplitude will jump from the lower value to a higher

value. This jump phenomenon is due to the presence of nonlinearity.

Then what value does the steady state amplitude take if the excitation fre-

quency starts and stays at a point within the multivalued region? The answer

is, it depends on the initial condition. In other words, if more than one steady

states exist, the initial condition determine which steady state is physically

realized by the system.
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This chaotic behavior is exclusively possessed by nonlinear stiffness model. For

nonlinear damping (linear stiffness) problem, the frequency-response curve is

always single-valued. This means that the steady state response of a nonlinear

damping system is independent of the initial conditions. And for nonlinear

damping problem, all the points in the frequency-response curve are physically

realizable and there is no jump phenomenon or chaotic behavior. This is

one of the fundamental differences between nonlinear damping problems and

nonlinear stiffness problems.

4. Interna/resonance and ener_$y exchanse between modes

What is internal resonance? For multi-DOF nonlinear systems, an important

case occurs whenever two or more natural frequencies are commensurable or

nearly commensurable. Examples of near-commensurability are

w2 _ 2_1, "_2 _ 3_1, a_ _ w2 ± wl,

w3 _ 2_2 4- wl, w4 _ ,_3 ± w2 ± wl

Depending on the order of the nonlinearity in the system, these commensurable

relationships of frequencies can cause the corresponding modes to be strongly

coupled, and an internal resonance is said to exist. When an internal resonance

exists in a free system, energy imparted initially to one of the modes involved

in the internal resonance will be continuously exchanged among all the modes

involved in the internal resonance.

For example, we consider the motion of a mass m attached to a spring that

is swinging in a vertical plane. If we let x(t) denote the stretch in the spring

beyond its equilibrium and O(t) denote the angle between the spring and the
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vertical line, then the governing equations of the motion are

O(t) ÷ gsinO(O + 2_(t)O(t)
t+=(t) =0

_(t) + k/rnz(t)- (l + z(t))O 2 -9cos0 = 0

where k is a spring constant, I is the natural length of the spring, and 9 is the

acceleration of gravity.

The two natural frequencies are

Suppose 1 and m are chosen such that w2 _ ¢01. If one starts the motion

when 0 = 00 # 0, by pulling the mass m down, one finds that the mass

oscillates up and down first, and that then a pendulum-type component of

motion develops and grows at the expense of the spring-type motion. After

a while, the pendulum-type motion starts to decrease and the spring-type

motion starts to grow. Thus the energy is transferred continuously back and

forth between the two modes of oscillation.

Whether commensurable or nearly commensurable frequencies can cause in-

ternal resonance depends on the degree of the nonlinearity and the geometry

of the system.

For energy type nonlinear damping system, internal resonance never occurs

for any commensurable or nearly commensurable frequencies. This fact can

be seen from its Krylov-Bogoliubov approximation. By Krylov-Bogoliubov

approximation, we know the energy possessed by the nth mode is given by

E.(O)(1 + 7qE'(O)t)-_
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where E.(0) is the initial energy of the nth mode. Therefore, the energy of

each mode is continuously absorbed by the damping mechanism and there is

no exchange of energy between any two modes. This is another fundamental

difference between nonlinear damping problems and nonlinear stiffness prob-

lems.

5. Steady state response to multi-frequency excitation and couplin 8 effect

Suppose the external excitation contains M frequencies, say they are

_, + _a, n = 1,2,...,M

Then the steady state response is dominated by these M modes. And the

frequency-response equation for the nth mode is given by

where G(_ 2) solves

(f,,B.¢./2) 2 ]q
a(# 2) = + +

and we used the notation _2 = (a_, a_,..., a b).

Comparing with the single frequency case, the stationary amplitude corre-

sponding to multi-frequency excitation becomes smaller due to the coupling

effect of nonlinear damping. However, qualitatively, there is no change in the

shape of the frequency-response curve. Therefore we see that the coupling

effect due to nonlinear damping is weak. This can also be seen by examining

the Krylov-Bogoliubov approximation, which tells us, to certain accuracy, if

the initial data involve only finite number of modes, nonlinear damping itself

will not involve modes other than those involved initially. The free response

will stay on those modes initially involved.
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In one word, by using nonlinear damping, one can only quantitatively change

the decay rate so that test data can be fitted. Nonlinear damping model with linear

stiffness does not produce any peculiar behavior such as internal resonance, jump

phenomenon or chaotic behavior. If the experiments on flexible space structures

indicated the existence of any of these peculiar behaviors, nonlinear stiffness model

becomes necessary.

8.2 Some Open Questions

Inspite of the above investigations, some questions remain unsolved. They are listed

below:

i. What is the spectral density of the following nonlinear stiffnessmodel with

lineardamping

+ 2_ + g(z) = an(t) (195)

where _ > 0 is a small parameter, and g(.) is an odd function of x E _1.

Even more challenging is the same question without assuming _ being small.

A handy example is the so-called Duffing oscillator

+ II_, + x 3 = an(t) (r/> O) (196)

R. N. Iyengar [45] studied this problem by first enhancing the dimension

(DOF), then using Equivalent Linearization Mehtod(ELM) to obtain an ap-

proximating linear system of equations, thus reducing the original single DOF

nonlinear stiffness model to a two-DOF linear model, for which the spectral

density become trivial. To illustrate the idea, let us consider the above Duffing

oscilla'or (196).
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Let z = z 3, then

= 3z2_

= 6x_2 + 3z2(_n(t)_ z3_ _)

-- 6z_ 2 + 3_z2n(t) -- 3zz _ -- _

Therefore, we obtain the second equation

£, + _: + 3z_z - 6_2x = 3¢rz2n(t) (197)

Then by applying Equivalent Linearization Method to (196) and (197), one

obtains the corresponding two-DOF linear model

)-- + =
dt2 z z -Q P z 3_¢r_

(198)

where P, Q, th are certain positive constants.

The spectral density obtained by this approach shows two peaks reflecting the

existence of subharmonics in the system. The secondary resonance occurs at

about three times the primary resonance frequency. Notice that the resulted

linear model has non-symmetric stiffness matrix.

Only Equivalent Linearization Method itself cannot account for the existence of

higher harmonics which is one of the very important nonlinear phenomenon.

Applying ELM to a single DOF nonlinear oscillator leads to a single DOF

linear oscillator which can oscillate at only one frequency. This viewpoint

hints the desirability of increasing the DOF of the equivalent linear system, so

as to allow more than one natural frequency to exist.
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It is worthwhile to mention that the stationary probability density of nonlinear

stiffness model (195) has been found, see, for example [25], which is given by

p.(x,y) = c0 exp[-2_/_2(c(x) + y2/2)]

where Co is the normalizing constant and

G(_) = _0"g(u)du

2. In Section _of Chapter 3, to find the approximate explicit stationary probabil-

ity density of general nonlinear damping model in single DOF case, what the

author proposed is to replace the damping term D(z, y) by the corresponding

energy type damping p(_)y, where p(E) is given by

4 ['/_ D(,/_/_o sin¢, v_ cos¢) cos¢d¢
_(E) = _v_ J0

And we have seen that both

+ _D(z,&) + W2ox = an(t)

and

(199)

have the same Krylov-Bogoliubov approximation and the same Cx and ¢_,

which are defined in (31). What we do not know now is the difference (in

an appropriate sense) between the two stationary probability densities corre-

sponding to the above nonlinear damping models. And what are the differences

between the stationary (first order) statistics, such as P_:(0) and R,_(0)?

In this regard, I make the following conjecture: for the general nonlinear

damping model with single DOF

+ D(z,_)+w_z=an(t)
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the stationary probability density can be written in the following form

2.0 D(u,v)v
po(X,y) = C0exp[--- [[ 2 dudv] (200)

_ra2J J (_,O_s(f,_)Wo u2 + v 2

where S(x,y)is a (z,y)-dependent closed area.

As we already know, the stationary probability density for energy type non-

linear damping model is given by

po(x,v) Coexp[-2/a _foE= ,O)dz]

If we use (199), the relation between p(E) and D(x,:_), then we obtain

po(x,y) Coexp[-2/a 2 fo E= ,(z)dz]

= Co exp[- 5 foe fff D(v/_ sin ¢, V/_ cos ¢)
_0

x cos CdCdv/_]

× D( psin_____._¢,P cos ¢)p2 cos CdCdp]
{.¢0

2Wo D(u,v)v

= C°exp[-'_"_aJf_,,,2+,,2<__z2+y2w6u'-i'_"2"-":T_dudv]+v

In this particular case, S(z, y) is a (z, y)-dependent parabola with center at

the origin and axes (W_ox2 + y2)a/_/wo and (w_ox_ + y2) 1/2.

3. If the self-adjoint operator A is positive definite and has compact resolvent,

with 0 E p(A), then the eigenfunctions of ,4o
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given by

= , = ; n = 1,2,-.-}

iw,¢, -iw,,¢,

form an orthogonal basis in 7"(® 7_.

In fact, first it is easy to verify that {_+, _';n - 1,2,...} is an orthogonal

sequence. To prove its completeness, let

w= E 7"/® 7"/

Y

and

w _!_

• Or equivalently, we have

span{O+,O;; n=l,2,-..}

'Ix, ¢.] - i_.[u,¢.] 0[w,¢.+lE= _. =

[w,CZ]r = _._[x,¢-]+ i,o.[y,¢.] = 0

which immediately gives

[u,¢.] = 0; [x,¢.] = 0, n = 1,2,...

By the assumptions upon A we know {¢,,; n = 1,2,-..} is an orthonormal

basis in 7"(, therefore, z = 0, y = 0, i.e., w = 0. Then the completeness is

justified for the non-damped case.

Now the open question is, with damping term D, are the eigenfunctions of

(01)-.4 -D

complete in 7"/® 7"(?
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